Автор работы: Пользователь скрыл имя, 14 Марта 2014 в 05:28, отчет по практике
В настоящее время здесь производится около 600 000 велосипедов и 40 000 мотоциклов в год. Трудовой коллектив насчитывает около 4000 человек. Форма собственности предприятия планомерно менялась: от государственной - в коллективную, а в 1999 году завод был преобразован в открытое акционерное общество, и генеральным директором предприятия был избран Анатолий Степанович Язвинский.
В условиях перехода к рыночной экономике одним из важнейших факторов повышения эффективности производства на ОАО «Мотовело» является обеспеченность их основными фондами в необходимом количестве и ассортименте и более полное их использование.
Введение……………………………………………………………………….2
1 Краткая характеристика предприятия……………………………………..3
1.1. История предприятия…………………………………………………….3
1.2. Организационная структура предприятия……………………………...4
1.3. Состав и функции планово-экономического отдела…………………...7
2 Технологическая схема производства продукции………………………..8
2.1. Характеристика используемого сырья…………………………………8
2.2. Ассортимент и технико-экономические показатели выпускаемой продукции…………………………………………………………………………….9
2.3. Общая характеристика применяемого технологического оборудования……………………………………………………………………….15
2.4. Технология производства (с составлением блок-схемы производства продукции)………………………………………………………………………….17
3 Метрологическое обеспечение технологических процессов производства продукции, организация контроля качества……………………...20
4 Организация складского хозяйства на предприятии……………………24
5 Перспективы развития предприятия (внедрение новых технологий, освоение новых видов продукции)………………………………………………..28
6 Индивидуальное задание………………………………………………….30
6.1. Технология и технико-экономическая оценка электрической дуговой сварки………………………………………………………………………………..30
6.2. Метод электроэрозийной обработки металлов……………………….37
Заключение ………………………………………………………………….49
Список использованных источников………………………………………50
Рисунок 4. Схемы сварки в среде защитных газов. Режимы сварки плавящимся электродом в среде инертных газов определяются типом
К разновидностям дуговой сварки в среде инертных газов относятся точечная сварка вольфрамовым электродом и полуавтоматическая сварка электрозаклепками плавящимся электродом. В первом случае соединение получается в результате сквозного проплавления верхнего листа. Этим способом свариваются малоуглеродистые и нержавеющие стали, а также титановые сплавы. Сварка точками производится на постоянном токе прямой полярности нитрованным вольфрамовым электродом в любых пространственных положениях, что особенно важно в монтажных условиях. При сварке электрозаклепками полуавтоматическая установка-дополнительно оснащается системой, обеспечивающей возможность регулирования дуги и периодическую подачу электродной проволоки на заданную длину. Электрозаклепками свариваются на постоянном токе прямой полярности стальные листы внахлестку, втавр и встык.
В качестве сварочного оборудования используются так называемые сварочные пистолеты, служащие для закрепления электрода, подачи газа, возбуждения и поддержания горения дуги.
Дуговая сварка в углекислом газе выполняется на полуавтоматических и автоматических установках плавящимся и неплавящимся (угольным или вольфрамовым) электродом. Этим методом удовлетворительно свариваются большинство сталей. Сварка в углекислом газе экономична и характеризуется высокой производительностью.
Сущность процесса сварки (автоматической и полуавтоматической) состоит в том, что дуга, возбужденная между электродом и изделием, горит в струе подаваемого через горелку углекислого газа. Под воздействием тепла дуги углекислый газ диссоциирует с образованием активного атомарного кислорода и окиси углерода. Двуокись углерода и окись углерода не растворяются в сварочной ванне. Окислительное действие углекислого газа нейтрализуется путем применения малоуглеродистой сварочной проволоки с повышенным содержанием марганца и кремния (Св-08ГС, Св-10Г2С). Сварка аустенитных сталей производится электродной проволокой близкой по составу к основному металлу.
Схема поста полуавтоматической сварки в среде защитит газов показана на рисунке 5.
Рисунок 5. Схемы поста для сварки в углекислом газе: 1 - баллон с жидкой углекислотой; 2 - вентиль; 3 - предредукторный осушитель газа; 4 - подогреватель газа; 5 - редуктор; 6 - регулятор давления (расхода) углекислого газа; 7 - электромагнитный клапан; 8 - реле давления; 9- резиновый рукав для, подачи газа; 10 - газоэлектрическая горелка; 11 - подающий механизм; 12 - шкаф распределительного устройства
Параметрами режима сварки в углекислом газе являются род, полярность и величина сварочного тока, диаметр электродной проволоки, напряжение дуги, скорость сварки и подачи проволоки и расход газа. Сварка производится постоянным током прямой и обратной полярности, а также переменным током с осциллятором. В качестве источников тока применяются стандартные и специально переоборудованные агрегаты с жесткой или возрастающей характеристикой. Сварка на повышенных режимах (большой ток и напряжение) способствует стабилизации дуги, уменьшению разбрызгивания металла, увеличению глубины проплавления кромок и производительности процесса.
Газоэлектрические горелки имеют водяное охлаждение (токи до 300 А) и воздушное (токи до 200 А). На рисунке 6, а показана схема горелки для сварки в углекислом газе с водяным охлаждением.
Рисунок 6. Схемы: а - горелки для сварки в углекислом газе; 1 - токопроводящая трубка; 2 - изоляционная шайба; 3 - сменный наконечник; 4 - каналы охлаждающей воды; 5 - сменное газовое сопло; б - положение горелки при автоматической сварке угловых швов: в - положения и перемещения горелки при полуавтоматической сварке угловых швов; г - сечения трубчатых электродов: 1 - металлическая оболочка; 2 - порошковая набивка
Сварка в углекислом газе выполняется во всех пространственных положениях. Сварка стыковых швов автоматами выполняется в нижнем положении при вертикальном положении электрода, а сварка угловых швов производится, как показано на рисунке 6, б. Полуавтоматическая сварка стыковых швов выполняется с наклоном электрода "углом назад" или "углом вперед", а сварка угловых швов - по схеме, показанной на рисунке 6, в.
К разновидностям сварки в углекислом газе относятся сварка электрозаклепками и сварка трубчатым электродом. При сварке электрозаклепками в отличие от сварки под флюсом отпадает необходимость в засыпке и уборке флюса, создается возможность сварки металла большой толщины. Кроме того, сварные швы при сварке в углекислом газе менее чувствительны к ржавчине.
Трубчатые электроды заполняются порошкообразными компонентами (раскисляющими, легирующими, шлакообразующими и ионизирующими). Этими электродами с защитой углекислым газом можно сваривать некоторые легированные стали на более высоких режимах (большой ток и напряжение), чем стандартной проволокой. Трубчатые электроды по сечению делятся на: простые цилиндрические и желобчатые.
Для соединения материала небольшой толщины применяется сварка неплавящимся электродом в смеси газов (25% Аr + 75% СО2). Подача газов производится к месту сварки раздельно. Аргон в данном случае предохраняет вольфрамовый электрод от окисления углекислым газом.
Технико-экономические показатели дуговой сварки
Технико-экономическое нормирование предусматривает установление технически обоснованных норм времени на производство сварочных работ. В норму времени входят: основное (машинное) время, подготовительно-заключительное время, вспомогательное время и время на обслуживание рабочего места.
Основное время – время, затраченное на получение сварного шва длинной 1 м. Оно определяется с учётом технологи сварки, производительности сварочного оборудования и режимов сварки. Подготовительно-заключительное время складывается из времени; на под-готовку сварщика к работе (получение задания, производственный инструктаж); на настройку и наладку сварочной аппаратуры; на сдачу работ. Обычно оно составляет 4…8% от основного времени.
Вспомогательное время складывается из времени: на установку и базирование заготовок на рабочем месте; на перемещения заготовок в процессе сварки; на установление режимов сварки; на зачистку швов и на другие аналогичные работы. Время на обслуживание рабочего места затрачивается на собственно обслуживание рабочего места, на отдых и личные надобности сварщика.
Основное время сварки равно:
tо=Qн/(Iсвαн),
где: Qн – масса наплавленного металла; Iсв – сварочный ток; αн – коэффициент наплавки.
Масса наплавленного металла определяется по заданным черте-жами размерам сварного шва. Масса наплавленного металла определяется по формуле:
Qн =FнLγ,
где: Fн – площадь поперечного сечения шва; L – длина шва; γ – плот-ность металла. Коэффициент наплавки – масса металла, наплавленного в течение 1 часа горения дуги (г/А час).
Для учета расхода электродов (электродной проволоки) необходимо рассчитать норму расхода электродов на изделие:
Нэ=GэL,
где: Gэ – расход электродов на 1 м шва; Gэ= Kр(1-ψ)Qн/L; Kр – коэффициент расхода на неизбежные потери электродов; ψ – экспериментальный коэффициент потерь на разбрызгивание металла электродов.
6.2. Метод электроэрозийной обработки металлов
Сущность и назначение электроэрозионной обработки
Электроэрозия - это разрушение поверхности изделия под действием электрического разряда. Основателями технологии являются советские ученые-технологи Б.Р. Лазаренко и Н.И. Лазаренко.
Электроэрозионная обработка (ЭЭО) широко применяется для изменения размеров металлических изделий - для получения отверстий различной формы, фасонных полостей, профильных канавок и пазов в деталях из твердых сплавов, для упрочнения инструмента, для электропечатания, шлифования, резки и др.
Рис.1Схема электроэрозионной обработки материалов: 1 - электрод-инструмент, 2 - обрабатываемая деталь, 3 - среда, в которой производится разряд, 4 - конденсатор, 5 - реостат, 6 - источник питания, 1р - режим электроискровой обработки, 2р - режим электроимпульсной обработки
Схема электроэрозионной обработки материалов приведена на рис. 1.9. Схема запитывается импульсным напряжением разной полярности, что соответствует электроискровому режиму (1р) и электроимпульсному режиму (2р). Напряжение питания заряжает конденсатор (4), параллельно которому включен разрядный промежуток между электродом-инструментом (1) и обрабатываемой деталью (2), которые помещены в жидкость с низкой диэлектрической проницаемостью. Когда напряжение на конденсаторе превысит потенциал зажигания разряда, происходит пробой жидкости. Жидкость нагревается до температуры кипения и образуется газовый пузырь из паров жидкости. Далее электрический разряд развивается в газовой среде, что приводит к интенсивному локальному разогреванию детали, приповерхностные слои материала плавятся и продукты расплава в виде шариков застывают в проточной жидкости и выносятся из зоны обработки.
Стадии электроэрозионной обработки Режим электроискровой обработки
Обрабатываемая деталь является анодом (+), то есть в данном случае деталь обрабатывается электронным потоком, то есть работает электронный стример, расплавляя объем анода-детали в виде лунки. Для того чтобы ионный поток не разрушал электрод-инструмент, используются импульсы напряжения длительностью не более 10-3 с. Электроискровой режим используется для чистовой, точной обработки, поскольку съем металла в данном случае небольшой.
Режим электроимпульсной обработки
Обрабатываемая деталь является катодом, то есть на нее подается отрицательный импульс длительностью больше 10-3 с. При электроимпульсной обработке между электродами зажигается дуговой разряд и обработка деталей ведется ионным потоком. Данный режим характеризуется большой скоростью съема металла, превышающей производительность электроискрового режима в 8-10 раз, но при этом чистота обработки существенно хуже. При обоих режимах в качестве рабочей жидкости, как правило, используется керосин или изоляционные масла.
Физика электроэрозионной обработки
Явления, происходящие в межэлектродном промежутке, весьма сложны и являются предметом специальных исследований. Здесь же будет рассмотрена простейшая схема удаления металла из области обработки посредством электрической эрозии.
Как показано на рис. 1.10, к электродам 1 подведено напряжение, которое создает электрическое поле в межэлектродном промежутке. При сближении электродов на критическое расстояние, возникает электрический разряд в виде проводящего канала. Для повышения интенсивности разряда электроды погружают в диэлектрическую жидкость 2 (керосин, минеральное масло и др.) На поверхности электродов имеются микронеровности различной величины. Напряженность электрического поля будет наибольшей между двумя наиболее близкими друг к другу выступами на поверхности электродов, поэтому именно здесь возникают проводящие мостики из примесных частиц жидкости. Ток по мостикам нагревает жидкость до испарения и образуется газовый пузырь (4), внутри которого и развивается мощный искровой или дуговой разряд, сопровождающийся ударной волной. Возникают потоки электронов и ионов (положительные и отрицательные стримеры), которые бомбардируют электроды. Образуется плазменный канал разряда. Благодаря высокой концентрации энергии в зоне разряда температура достигает тысячи и десятков тысяч градусов. Металл на поверхности электродов плавится и испаряется. Капли расплавленного металла в результате движения потока жидкости в рабочей зоне выбрасываются за пределы электродов и застывают в окружающей электроды жидкости в виде мелких частиц сферической формы (5).
От взаимодействия жидкости с участками электродов, нагретых до температуры 100-400 0С, на границах плазменного канала разряда происходит пиролиз диэлектрической жидкости. В результате в жидкости образуются газы, а также асфальтосмолистые вещества. Из газовой среды выделяется углерод, отлагающийся на нагретых поверхностях электродов в виде тонкой пленки кристаллического графита. В месте действия импульса тока на поверхностях электродов остаются небольшие углубления - лунки, образовавшиеся вследствие удаления разрядом некоторого количества металла.
В таблице приведена зависимость величины эрозии стального электрода от энергии и длительности одиночного импульса.
Таблица
Зависимость величины эрозии стального электрода (анода) от энергии и длительности одиночного импульса
Характеристика импульса |
Размеры лунки | |||
Энергия, Дж |
Длительность, мкс |
Глубина, мм |
Диаметр, мм |
Объем, м3 |
0,001 0,1 1,0 2,0 |
9 40 60 1500 |
0,015 0,025 0,042 0,050 |
0,1 0,75 1,65 2,00 |
0,000078 0,0074 0,06 0,10 |