Автор работы: Пользователь скрыл имя, 16 Июня 2013 в 18:58, реферат
Целью исследования является разработка методики преподавания темы «Система счисления» в школьном курсе информатики.
Основная задача дипломной работы: формирование у учащихся навыков работы организации и проектирования учебного процесса. Разработка методического обеспечения по изучению темы «Система счисления».
ВВЕДЕНИЕ ……...………………………………………………………..………3
ГЛАВА 1. ИСТОРИЯ ВОЗНИКНОВЕНИЯ И РАЗВИТИЯ ТЕОРИИ ЧИСЕЛ ..7
1.1. Исторические предпосылки развития систем счисления в разных странах ………………………..………………………………….………..……7
1.2. Роль систем счисления в истории развития компьютеров……...…....18
1.3. Вклад ученых в развитие теории чисел ………………..……..……23
ГЛАВА 2. ПЕДАГОГИЧЕСКИЕ И МЕТОДИЧЕСКИЕ ОСОБЕННОСТИ ПРЕПОДАВАНИЯ ТЕМЫ «СИСТЕМЫ СЧИСЛЕНИЯ»…...……….......32
2.1. Методика преподавания темы «Системы счисления» ...……………32
2.2. Педагогические и методические особенности обучения арифметическим основам ЭВМ в базовом курсе информатики ………………………...………55
2.3. Анализ и результаты исследования ………………………...………...58
ЗАКЛЮЧЕНИЕ ………………………………………...…………………...…61
БИБЛИОГРАФИЧЕСКИЙ СПИСОК ..………….……………...….............63
ПРИЛОЖЕНИЕ №1 …………………………………………………...….…...65
ПРИЛОЖЕНИЕ №2 …………………………………………………...….…...72
Дробей римляне избегали так же упорно, как и больших чисел. В практических задачах, связанных с измерениями, они не использовали дроби, подразделяя единицу измерения обычно на 12 частей, с тем чтобы результат измерения представить в виде составного числа, суммы кратных различных единиц, как это делается сегодня, когда длину выражают в ярдах, футах и дюймах. Английские слова «ounce» (унция) и «inch» (дюйм) происходят от латинского слова uncia (унция), обозначавшего одну двенадцатую основной единицы длины. Такая нумерация преобладала в Италии до XIII века, а в других странах Западной Европы - до XVI века [7].
Обозначение чисел в России
В России первая, дошедшая до нас, математическая рукопись восходит к началу XII века. Это - "Кирика Диакона и Доместика Антоньева монастыря учение, им - же ведати человеку числа всех лет". Числа в этой рукописи отображались в алфавитной системе нумерации. Это же и относится и к спискам знаменитого юридического памятника, "Русской правды", относящимся к XIV-XV вв. В славянской нумерации можно выделить: глаголическую и кириллическую нумерации. В России славянская нумерация сохранилась до конца XVII века. При Петре I возобладала так называемая "арабская нумерация" [9].
1.2 Роль систем счисления в истории развития компьютеров
В предисловии
к книге Анри Лебега "Измерение
величин" академик А.Н. Колмогоров замечает:
"У математиков существует склонность,
уже владея законченной математической
теорией, стыдиться ее происхождения.
По сравнению с кристаллической
ясностью развития теории, начиная
с уже готовых ее основных понятий
и допущений, кажется грязным
и неприятным занятием копаться в
происхождении этих основных понятий
и допущений. Все здание школьной
алгебры и весь математический анализ
могут быть воздвигнуты на понятии
действительного числа без
К сожалению, нечто подобное иногда наблюдается и в компьютерной науке. Владея развитой компьютерной теорией, компьютерные специалисты иногда забывают о той роли, которую сыграли системы счисления в истории компьютеров. Ведь первые счетные приборы (абаки и арифмометры), прообразы современных компьютеров, начали создаваться задолго до возникновения алгебры логики, теории алгоритмов - и главную роль при их создании сыграли именно системы счисления. Об этом не следует забывать, прогнозируя дальнейшее развитие компьютерной техники [5].
В истории систем счисления выделяют несколько этапов: начальная стадия счета, непозиционные системы счисления, алфавитные системы нумерации, поместные или позиционные системы счисления. Начальная стадия счета "характеризуется изображением сосчитываемых множеств при помощи частей тела, особенно пальцев рук и ног, палочек, узлов веревки и т.д. Как подчеркивается в статье И.Г. Башмаковой и А.П. Юшкевича "Происхождение систем счисления" ("Энциклопедия элементарной математики", том 1, "Арифметика", 1951г.)", несмотря на крайнюю примитивность этого способа изображения, он сыграл исключительную роль в развитии понятия числа". И именно в этот начальный период было сделано одно из крупнейших открытий античной математики. Речь идет о позиционном принципе представления чисел. Как подчеркивается в упомянутой выше статье Башмаковой И.Г. и Юшкевича А.П., "первой известной нам системой счисления, основанной на поместном, или позиционном принципе, является шестидесятеричная система древних вавилонян, возникшая примерно за 2000 лет до н.э.".
Для объяснения вопроса о ее происхождении в истории математики возникло несколько конкурирующих гипотез. М. Кантор первоначально предположил, что сумерийцы (первичное население долины Евфрата) считали год равным 360 суткам и что шестидесятеричная система имеет астрономическое происхождение. По гипотезе Г. Кевича в долине Евфрата встретились два народа, из которых у одного была десятичная система счисления, а у другого основанием было число 6 (возникновение такого основания Кевич объясняет особым счетом на пальцах, в котором сжатая в кулак рука означала 6). Благодаря слиянию обеих систем возникло "компромиссное" основание 60. Заметим, что гипотезы Кантора и Кевича касаются вопроса о происхождении основания 60, но не самого позиционного принципа представления чисел.
На последний вопрос отвечает гипотеза Нейгебауера об измерительном происхождении позиционного принципа, изложенная в книге "Лекции по истории античных математических наук" (т. 1 - "Догреческая математика", 1937г.). Согласно этой гипотезе "основные этапы образования позиционной системы в Вавилоне были таковы:
1) установление
количественного соотношения
2) опускание названий разрядовых единиц при письме". Эти этапы возникновения позиционных систем Нейгебауэр считает совершенно общими, подчеркивая при этом, что "позиционная шестидесятеричная система: оказалась вполне естественным конечным результатом долгого развития, ничем принципиально не отличающегося от аналогичных процессов в других культурах".
Что касается основания 60, которое, по мнению Нейгебауэра, возникло как синтез вавилонских систем мер, то более убедительной все же является гипотеза Кантора о его "астрономическом" происхождении. Происхождение числа 60 в качестве основания вавилонской системы счисления, а также чисел 12, 30 и 360 как узловых чисел всех календарных систем, систем измерения времени и угловых величин можно объяснить с позиций астрологических и астрономических знаний и основанных на них представлений о гармонии Вселенной. В Вавилоне и Египте с давних времен при составлении календарей большое значение придавали самой крупной из планет-гигантов - Юпитеру, который примерно за 12 лет делает полный оборот вокруг Солнца. Не меньшую роль играл также Сатурн, который совершает полный оборот вокруг Солнца примерно за 30 лет. Приняв 60 лет в качестве главного цикла Солнечной системы, составителям древних календарей удалось идеально согласовать циклы Юпитера (5x12=60) и Сатурна (2x30=60). Гармонию Вселенной с давних времен символизировали пять "правильных" геометрических тел, называемых "Платоновыми телами". Особую роль при этом играл додекаэдр - правильный 12-гранник, гранями которого являются правильные пятиугольники ("пентаграммы"). Отсюда следует, что число углов на поверхности додекаэдра равно 5x12=60 (что соответствует 60-летнему циклу). Додекаэдр имеет 30 ребер (что соответствует циклу Сатурна) и 12 граней (что соответствует циклу Юпитера), а произведение этих чисел 30x12=360. Следуя магической числовой символике додекаэдра, которая отражала числовую гармонию циклов Юпитера и Сатурна, древние вавилоняне и выбрали число 60 в качестве основания своей системы счисления, а древние египтяне пришли к мысли разбить год на 12 месяцев (число граней додекаэдра), каждый из которых содержал ровно 30 дней (число ребер додекаэдра). Таким и был египетский календарь, созданный в четвертом тысячелетии до н.э. В этом календаре год состоял из 365 дней. Он делился на 12 месяцев по 30 дней каждый, в конце года добавлялось пять праздничных дней, которые, однако, не входили в состав месяцев. Заметим, что в своей системе измерения времени и угловых величин египтяне также использовали "магические" числа додекаэдра (1 сутки = 24 (2x12) часа, 1 час = 60 минут, 1 минута = 60 секунд, 2p=360╟, 1╟=60') [10].
Появление
позиционной системы
Мы для повседневных вычислений используем десятичную систему счисления, предшественницей которой является индусская десятичная система, возникшая примерно в XII-м столетии нашей эры. Известный французский математик Лаплас (1749-1827) выразил свое восхищение позиционным принципом и десятичной системой в следующих словах: "Мысль выражать все числа девятью знаками, придавая им, кроме значения по форме, еще значение по месту, настолько проста, что именно из-за этой простоты трудно понять, насколько она удивительна. Как нелегко было прийти к этой методе, мы видим на примере величайших гениев греческой учености Архимеда и Аполлона, от которых эта мысль осталась скрытой" [9].
1.3. Вклад ученых в развитие теории чисел
Лаплас (1749-1827)
Убежденным
сторонником использования
"Девять индусских знаков - суть следующие: 9, 8, 7, 6, 5, 4, 3, 2, 1. С помощью этих знаков и знака 0, который называется по-арабски zephirum, можно написать какое угодно число".
Здесь словом "zephirum" Фибоначчи передал арабское "as-sifr" , являющееся дословным переводом индусского слова "sunya", то есть "пустое",служившее названием нуля. Слово "zephirum" дало начало французскому и итальянскому слову "zero" (нуль). С другой стороны, то же арабское слово "as-sifr" было передано через "ziffer", откуда произошли французское слово "chiffre", немецкое "ziffer", английское "cipher" и русское "цифра" [27].
Леонардо Пизано Фибоначчи (1170-1228)
Что касается выбора числа 10 в качестве основания десятичной системы счисления, то существует общепринятое мнение, что оно имеет "пальцевое" происхождение. Однако не следует забывать, что в древней науке число 10 всегда несло в себе особую смысловую нагрузку. Пифагорейцы называли его четверицей или тетрактидой. Говоря словами Эмпедокла в нем - "вечно текущей природы: корень источный". Четверица 10=1+2+3+4 считалась у пифагорейцев одной из высших ценностей и являлась "символом всей Вселенной", так как содержала в себе четыре "основных элемента": единицу или "монаду", обозначающую, по Пифагору, дух, из которого проистекает весь видимый мир; двойку, или "диаду" (2=1+1), символизирующую материальный атом; тройку, или "триаду" (3=2+1), то есть символ живого мира; и наконец, четверку, или "тетраду", (4=3+1), соединявшую живой мир с монадой и поэтому символизировала целое, то есть "видимое и невидимое". А поскольку тетрактида 10=1+2+3+4, то она выражала собой "Все". Таким образом, гипотеза о "гармоничном" происхождении числа 10 имеет не меньшее право на существование, как и "пальцевая".
В современной
науке с развитием компьютерной
техники на первые роли выдвинулась
двоичная система счисления. Ее зачатки
наблюдаются у многих народов. Например,
у древних египтян широкое
распространение получили методы умножения
и деления, основанные на принципе удвоения.
Изобретение двоичного способа
нумерации приписывают
Известно два варианта решения задачи Баше-Менделеева. Первый предполагает, что гири разрешается класть только на одну, свободную от груза чашу весов; при этом оптимальным решением является "двоичная система гирь": 1, 2, 4, 8, 16,…, которая при взвешивании "порождает" двоичный способ представления чисел. При втором варианте гири разрешается класть на обе чаши весов; оптимальным решением при этом является "троичная система гирь": 1, 3, 9, 27,…, которая при взвешивании "порождает" троичную симметричную систему счисления, которая и была положена Н. П. Брусенцовым в основу троичного компьютера "Сетунь".
Но автор двоичной арифметики в истории науки доподлинно известен: это известный немецкий математик Лейбниц (1646-1716), который в 1697г. разработал правила двоичной арифметики. Лейбниц настолько был восхищен своим открытием, что в его честь выпустил специальную медаль, на которой были даны двоичные изображения начального ряда натуральных чисел - возможно, это был тот редкий случай в истории математики, когда математическое открытие было удостоено такой высокой почести.
Лейбниц (1646-1716)
Лейбниц,
однако, не рекомендовал двоичную арифметику
для практических вычислений вместо
десятичной системы, но подчеркивал, что
"вычисление с помощью двоек, то
есть 0 и 1, в вознаграждение его длиннот
является для науки основным и
порождает новые открытия, которые
оказываются полезными
Информация о работе Методика использования систем счисления в базовом курсе информатики