Автор работы: Пользователь скрыл имя, 13 Июня 2013 в 21:19, курсовая работа
Цель работы позволила определить следующие основные задачи:
-исследовать состояние проблемы в психолого-педагогической теории и практике школьного обучения;
-установить место и роль математических понятий в процессе обучения математики;
-определить методические требования к формированию математических понятий;
-обобщить опыт работы учителей над математическими понятиями при обучении математике и разработать методическую систему по формированию математических понятий.
Введение 2
Глава 1.Теоретические аспекты формирования математических понятий 2
1.1Термин «понятие» в психолого-педагогической, философской, учебно-методической литературе 2
1.2 Подходы к формированию математических понятий 2
1.3. Виды, определения математических понятий в начальной школе и их классификация 2
Глава 2. Методика формирования математических понятий в курсе начальной математики 2
2.1. Обще методический подход к формированию математических понятий в школьной практике 2
2.2. Методическая система по формированию математических понятий: множества, величины, числа, алгебраических и геометрических понятий. 2
Заключение 2
Список использованной литературы 2
Смысл операций над натуральными числами и их законы формируются на теоретико-множественной основе. Нахождение результата операций раскрывается в аксиоматической теории. Так, операции сложения и умножения натуральных чисел базируется на следующих аксиомах
Операция сложения Операция умножения.
1. а + 0 = а; 3. а • 0 = 0;
2. а + b' я (а + b)' 4. а • b' = а ' b + а
Следствие: а + 1 = а' Следствие: а • 1 =5 а
Аксиомы 1 и 3 и следствия из этих аксиом ученики должны твердо знать Нахождение результата сложения (до таблиц сложения) определяется путем присчитывания по одному (т.е. используется первое следствие).
В традиционной методике умножение рассматривается как частный случай сложения, что позволяет умножать натуральные числа только начиная с двух. Естественно, такой подход к операции умножения нельзя считать удачным, так как не позволяет найти результат умножения в таких случаях, как а • 1; а • 0;(а/b) • (с/а).
Ранее в нашей работе достаточно подробно рассмотрена операция умножения, как мощность декартова произведения и как сумма одинаковых величин. Существует и другой подход к операции умножения, с позиции которого можно обосновать не только умножение натуральных чисел, начиная с двух, но и умножение на 1 и на 0, умножение обыкновенных дробей. Этот подход заключается в том, что умножение рассматривается как переход от одной единицы измерения к другой. Сформировать у учащихся смысл операции умножения с этой позиции можно на таких практических работах.
Пример 1. Нужно измерить емкость банки сначала кружками, а потом стаканами (рис. 2.11). В ходе измерения получили 5 кружек или 15 стаканов. Учитель обращает внимание на то, что стаканами измерять долго, и задает
Рис. 2.11
вопрос: "Нельзя ли узнать, не измеряя, сколько стаканов в банке?" Дети предлагают для этого измерять стаканами кружку. Так как в банке 5 кружек (старая мерка) и в одной кружке 3 стакана (новая мерка), то в банке 5 • 3 = 15 (стаканов).
Пример 2. Учитель предлагает быстро пересчитать тетради. Ученики считают по две тетради (старая мерка) и получают 15 пар, поэтому в пачке 15 - 2 = 30 (тетрадей).
Пример 3. Ученикам предлагается быстро измерить полоску и даются две мерки: в 1 дм и в 1 см Дети меряют сначала большой меркой и получают число 4. Так как 1 дм содержит 10 см (новая мерка 1 см), то вся полоска содержит 4 • 10 = 40 (см).
Пример 4. Задача. Сколько нужно плиток кафеля, чтобы обложить такую же стенку, которая изображена на рисунке? Дети считают сначала рядами (1 ряд - старая мерка), а потом -сколько в ряду плиток (1 плитка - новая мерка). Всего плиток 4 • 9 = 36.
Умножение на 1 можно объяснить так: пусть в примере 1 в кружке помещается ровно один стакан, тогда в банке будет 5 • 1 = 5 (стаканов).
Умножение
на 0 можно объяснить на примерах,
в которых новая мерка
Нахождение результата вычитания основывается на следующем определении.
Определение. Разностью из натурального числа " а " натурального числа " b " называется такое натуральное число " с ", что а = b + с.
Таким образом, вычитание рассматривается как действие обратное сложению. Это позволяет находить результат вычитания не только путем отсчитывания по одному, но и используя зависимость между компонентами операции сложения: 5 - 2 = (5 - 1) -1 и 2 + … =5.
Нахождение результата деления основывается на следующем определении.
Определение. Частным от деления натурального числа " а" на натуральное неравное нулю число " b " называется такое натуральное число " с ", что а • b = с.
Так как деление есть операция обратная умножению, то для нахождения результата деления используется зависимость между компонентами операции умножения: 3 •…=6. На этом же основывается и составление таблиц вычитания и деления:
а) 2+3=5; 5 - 2=3; . б) 2 • 3 = 6; 6:2=3.
Деление с остатком в начальных классах основывается на следующем определении.
Определение. Делением натурального числа " а " на натуральное число «b» с остатком называется отыскание такого частного си остатка q, что, а = b • с + q, где
q< b.
Согласно этому определению, наряду с записью, например, 23 : 5 = 4 (ост.3), ученикам должна даваться и такая запись: 23 = 5 • 4 + 3. Это позволяет разнообразить примеры на деление с остатком: П =5*4+3 (проверка деления с остатком). Ученики должны знать не только порядковую структуру множества натуральных чисел, которая была приведена выше, но и алгебраическую структуру натуральных чисел. (См. приложение 1)
Операции
над многозначными числами
Определение. Счислением (нумерацией) называется совокупность способов устного наименования и письменного обозначения чисел.
Существуют непозиционные и позиционные системы счисления.
В непозиционной системе счисления каждый знак (цифра) служит для обозначения одного и того же числа. Примером непозиционной системы счисления является римская нумерация, которой широко пользуются в настоящее время. Например, XII - это 10 + 1 + 1 =12.
Позиционная система счисления базируется на поместном значении цифр, заключающееся в том, что один и тот же знак (цифра) означает одно и то же число единиц разных разрядов независимо от того, на каком месте в записи числа стоит этот знак. Например, в числе 737 цифра 7 означает числа семь и семьсот.
Изучение
темы "Нумерация чисел" учитель
должен начинать с формирования представления
о позиционной системе
В традиционном
обучении при изучении нумерации
чисел у учащихся отрабатываются
понятия "десятки", "сотни", что
приводит к смешению устной нумерации
и письменной. Этого нельзя делать,
потому, что это может привести
к ошибкам. Например, дети часто говорят,
что в числе 325 два десятка (вместо
- 32 десятка), В дальнейшем это приводит
к затруднениям в выполнении операций
над многозначными числами, которые
базируются на операциях над однозначными
числами. Поэтому при изучении многозначных
чисел нужно обращать внимание детей
на разряды и на число единиц в
разрядах. Например, в числе 6325 шесть
единиц четвертого разряда, три единицы
третьего разряда, две единицы второго
разряда и пять единиц первого
разряда. Такая работа позволит ученикам
легче и быстрее усвоить
2.2.6 Числовые выражения.
Числовые равенства и
Любое число уже является числовым выражением. Выполнив операции, которые имеют место в числовом выражении, получают значение числового выражения. Существуют выражения, которые не имеют значения. Например, выражение 28 : 8 - 44 не имеет числового значения.
С первых дней пребывания в школе дети сталкиваются с различными числовыми выражениями и учатся находить их числовое значение. Значительно меньше в школе уделяется внимание числовым равенствам и неравенствам, их свойствам, что сказывается при их обучении в старших классах. Поэтому учитель должен предлагать учащимся достаточное количество упражнений следующих видов.
1. Являются ли данные равенства верными:
10-3*2=2*2; 5+2*3=6+4?
2. Являются ли данные неравенства верными:
8-3 • 2<3 +4; 14: (5 + 2) >2 + 3?
3. Зная, что 2 + 3 = 10 : 2 и 4 +7 > 8 + 2, поставьте вместо звездочки знак "=", ">", "<", не вычисляя значения числовых выражений, стоящих в правой и левой частях числовых равенств и неравенств:
(2 + 3) + 4 * 10 : 2 + 4 ; (2 + 3) - 4 *10 : 2 - 4 ;
4+7-3*8+2-3; (4 + 7) • 2 • (8 + 2) • 2 .
2.2.7.Выражение с переменными,
Если числовое выражение содержит и буквы, то мы имеем выражение с переменными. Например, 2а - 3; За + 2b с + 8 .
Выражение с переменными обычно обозначают так: f(х); А(b;с); В(х;у) Если в выражение с переменными подставить вместо букв их значения, то получится числовое выражение. Те значения переменной, при которых выражение с переменной имеет числовое значение, называется областью определения выражения с переменной. Например, областью определения выражения с переменной 2а - 3 на множестве действительных чисел является все множество действительных чисел, а на множестве натуральных чисел - натуральные числа, начиная с двух (если а = 1 , то 2 • 1 - 3 не является натуральным числом).
В начальных
классах учитель обязан сформировать
понятие о выражении с
Пример 1. Цель: сформировать у детей понимание необходимости введения в числовое выражение букв и представление об области определения выражения с переменной.
Учитель записывает на доске несколько числовых выражений: 1 + 2; 2+2; 3+2. Затем он обращает внимание на то, что первое слагаемое меняется, а второе - нет. Поэтому, чтобы не продолжать ряд, можно все эти выражения заменить одним
+ 2, где в окошечко можно
Пример 2. Цель: научить учащихся самим находить область определения выражения с переменной.
Учитель спрашивает, какие числа можно подставить в следующие выражения: 8 - ; 3-2; : 2; 5 – : 3; : 5 - 7. Дети подбором находят область определения каждого выражения с переменной.
Пример
3. Цель: научить учащихся находить область
определения выражения с
Учитель предлагает следующую задачу. Сколько килограммов сахара, расфасованного в пакеты, принесли Коля и Оля, если в каждом пакете по два килограмма сахара?
Ученики записывают задачу в виде выражения 2а + 2b (или 2 • (а + b)), где а - количество пакетов, которые принес Коля, и b - количество пакетов, которые принесла Оля. Затем в ходе анализа задачи дети делают вывод, что Коля может нести не более 8 кг (от одного до четырех пакетов), а Оля - не более 6 кг (от одного до трех пакетов). Таким образом, ае{1;2;3;4} и bе {1; 2; 3}.
Задача имеет 12 решений, если перебрать все варианты наборов а и b .
2.2.8 Уравнения и неравенства,
область определения,
Равенство (неравенство), содержащее неизвестное, называется уравнением (неравенством). Множество, элементы которого можно подставить в уравнение (неравенство) вместо неизвестного, называется областью определения уравнения (неравенства).
Те значения неизвестного из области определения, при которых уравнение (неравенство) обращается в верное числовое равенство (неравенство), называется корнями уравнения (множеством решения неравенств).
Два уравнения
(неравенства) называются равносильными,
если у них совпадают области
определения и множества
При решении любого уравнения (неравенства) его заменяют более простым равносильным уравнением (неравенством). В начальных классах формируется следующие два основных свойства равносильных преобразований.
1. Если
к обеим частям уравнения (
Например, уравнения Зх=2х+4 и 3х- 2х=4 равносильны.
2.Если обе части уравнения умножить на выражение, имеющее ту же область определения, и которое не обращается в нуль на этой области определения, то получим уравнение, равносильное данному.
В начальных классах формируется понятие об уравнении и неравенстве, их области определения, множестве решений, равносильных преобразованиях. Покажем на примерах, как можно построить обучение по их формированию.
Пример
1. Ученикам предлагается записать с
помощью уравнения решение
Ученики записывают 10 - 2 х = 2 и определяют, что вместо "х" можно подставить числа 1, 2, 3, 4, 5 (находят область определения). Подбором они убеждаются, что х = 4 является корнем уравнения.
Пример
1. Для отработки умений находить
область определения и
Информация о работе Формирование математических понятий младших школьников