Шамалардың және сандардың қатынасы

Автор работы: Пользователь скрыл имя, 22 Октября 2015 в 12:05, курсовая работа

Описание работы

Математикада тек қана обьектілер емес (сан, фигура, шама т.с) олардың арасындағы қатынастар, байланыстар да зерттеледі. Натурал сан ұғымын қалыптастыру - бастауыш математика курсының негізгі ұғымы және жалпы математика сандар арасындағы әртүрлі өзара байланысты зерттей отырып дамиды.
Геометрияда түзулердің параллельдік, перпендикулярлық, фигуралардың теңдік, ұқсастық т.с.с. геометриялық обьектілердің арасындағы әр түрлі қатынастарды зерттейді.

Содержание работы

Кіріспе.............................................................................3-4

I Шамалардың және сандардың қатынасы
Шамалардың қатынасы, сандардың қатынасы................................................5-6
Қатынас мүшелерінің қасиеттері, кері қатынастар.......................................7-10
II Бастауыш математика курсында қатынастарды
оқыту
Қатынас ұғымы. Қатынастың қасиеттері...................................................11-18
Сәйкестік туралы ұғым................................................................................19-24
Бөлінгіштік қатынасы туралы ұғым...........................................................25-26
Геометриялық фигуралар және олардың қатынасы..................................27-31
Математикадан алғашқы ұғым беру...........................................................32-41
Қорытынды..................................................................................................42
Әдебиеттер.......................................................................................43-45

Файлы: 1 файл

Дип.-Бастауыш-математика-курсы.doc

— 347.50 Кб (Скачать файл)

Жиындарды салыстырып, олар қиылысады немесе тең, біреуі екіншісіне тиісті, т.с.с. яғни жиындар арасында да қатыстар орнатылады.

Математикада көбінесе екі обьектінің арасындағы қатынас қарастырылады. Оны бинарлық қатынас деп атайды. Біз тек қана бинарлық қатынасты қарастыратын болғандықтан, алдағы уақытта «бинарлық» деген сөзді қолданбаймыз.

Сандардың, геометриялық фигуралардың, жиындардың және басқа да обьектілердің арасындағы белгілі бір қатыстар туралы біле отырып, оларда қандай ортақ қасиет бар екенін, әртүрлі қатыстардың жиынын қалай классификациялауға болатынын     қарастырамыз.     Өзімізге     белгілі     әртүрлі қатынастардың арасында қандай ортақ мәселе бар екенін анықтайық.

Х={3,4,5,6,8}    сандар    жиынын    қарастырайық.    Бұл сандардың арасында «артық» қатынасы бар, 4>3, 5>3, 8>3, 5>4, 6>4, 8>4, 6>5,8>5, 8>6

Осы сандардың арасындағы «1-ге артық» деген қатынасты қарастырайық «4саны 3-тен 1-ге артық», «5 сан 4-тен 1-ге артық», «бсаны 5-тен 1-ге артық» болады.

Берілген жиынның элементтерінің арасында «2есе кем» деген де қатынасты орнатуға болады; «3 саны 6 - дан 2 есе кем, «4 саны 8-ден 2есе кем».

  Бұл сандардың арасында әлі де бірқатар қатынастар болатынын қарастыруға болады. Біз жоғарғыдағы үш қатынаспен шектелейік.

Мына жағдайға көңіл аударамыз: әрбір қатынасты қарастырғанда элементтері берілген X жиынынан алынған реттелген қостардың жиынын құрдық. «артық»қатысы бұл жиын {(4,3), (5,3), (4,3), (6,3) (8,3), (5,4), (6,4), (8,4), (6,5), (8,5), (8,6),} «1-ге артық» қатысы үшін {(4,3),(5,4),(6,5)}, ал «2-есе кем» қатысы үшін {(3,6),(4,8)} болады. Сонымен, қарастырылған әрбір қатынас Х={3,4,5,6,8} жиынының элементтерінен құрылған қостардың жиынымен анықталады. Реттелген қостардың берілген жиынның өзіне - өзінің декарттық көбейтіндісінің элементтері немесе оның ішкі жиыны болатыны белгілі. Жоғарыда қарастырылған «артық», 1-ге артық, 2-есе кем» қатынастары

Х*Х = {(3,3), (3,4), (3,5), (3,6), (3,8), (4,3), (4,4), (4,5), (4,6), (4,8), (5,3), (5,4), (5,5), (5,6), (5,8), (6,3), (6,4), (6,5), (6,6), (6,8), (8,3), (8,4), (8,5), (8,6), (8,8)} жиынның ішкі жиыны екенін байқау қиын емес.

Математикада қатынас реттелген қостарды X жиынының элементтерінің арасындағы қатынас деп атайды.

Анықтама: X жиынының элементтерінің арасындағы немесе X жиынындағы қатынас деп Х*Х декарттық көбейтіндісінің кез-келген ішкі жиынын атайды. Қатынасты латынның үлкен әріптерімен белгілейді: P,Q,R,S т.с.с. Сонымен егер X жиынының элементтерінің арасындағы қатынас R болса, онда R(X*X) болады.

Егер қатынас арқылы X жиынында берілсе, оны нүктелердің және оларды қосатын стрелкалардан (бағытталған сызықтардан) тұратын ерекше сызба арқылы көрнекті түрде беруге болады. Бұл сызбаны граф деп атайды.

Мысалы, Х={2,4,6,8,12} жиынның элементтерінің арасындағы «артық» қатынасының графын салайық. Ол үшін осы жиынның элементтерін нүктелер арқылы кескіндеп, өзара «артық» қатысы орындалатын нүктелерді стрелкамен қосамыз. 4/2 болғандықтан стрелка 4-тен 2-ге қарай жүргізіледі.

Осы қатынас орындалатын барлық нүктелер стрелкамен қосылады. Сонымен,Х={2,4,6,8,12} жиынының элементтерінің арасындағы «артық» қатынасының графы алынады. Берілген нүктелер графтың төбелері, ал оларды қосатын стрелкалар графтың қабырғалары деп аталады.

Берілген X жиынында «еселі» деген қатынасты қарастырып, оның графын салайық. Алдыңғы мысалдағыдай X жиынының барлық элементтерін нүктелер арқылы бейнелеп, бірімен - бірі «еселі» қатынаста болатын элементтерді стрелкамен қосамыз. X жиынындағы әрбір элемент өзіне - өзі еселі болғандықтан бұл графта басы да ұшы да беттесетін стрелкалар болады. Мұндай стрелкаларды ілгектер деп атайды.

Қатынастың берілу тәсілдері

Анықтама бойынша X жиынының элементтерінің арасындағы R қатынасы Х*Х жиынының ішкі жиыны, яғни элементтері реттелгөн қостар болатын жиын. Сондықтан қатынастың да берілуі мағынасы жағынан жиынның берілу тәсілдері сияқты болады.

1. X  жиынында   берілген   R   қатысы   X   жиынынан 
алынған    осы    қатынаспен    байланысқан    элементтердің 
реттелген қостарын тізіп жазу арқылы беріледі.

       Бұл жағдайда қатынастың элементтерін тізіп жазу формасы әртүрлі болуы мүмкін. Мысалы, Х={4,5,6,7,9} жиынындағы қандай да бір R қатысының берілуін мынандай қостар жиыны {(5,4), (6,4), (6,5), (7,4), (7,5), (7,6), (9,4), (9,5), (9,6), (9,7)} немесе граф арқылы беруге болады.

2. Көп   жағдайда   X  жиынындағы   R   қатынасы   осы 
қатынаста    болатын    элементер    қостарының    жиынының 
сипаттамалық қасиетін көрсету арқылы беріледі. Бұл қасиет 
екі   айнымалысы   бар   сөйлем   ретінде   тұжырымдалады. 
Мысалы, N натурал сандар жиынындағы мына қатыстар: «х 
саны у-тен артық» деген сөйлемді «х/у»,ал «х саны у-тен 3 
есе  кем» деген сөйлемді  «у=х/3 түрінде сәйкес теңсіздік, 
теңдік  арқылы   көрсетуге  болады.   Жазықтықтағы   түзулер 
арасындағы        «перпендикулярлық»,        «параллельлдік», 
қатыстары     үшін     х!у,х//у     символдары     қолданылады. 
Ұшбұрыштар арасындағы «теңдік», «ұқсастық», «конгруэнтті» 
қатынастары үшін ABC = А В С; ABC- ABC, ABC = A B C 
ерекше     символдар     қолданылады.     Осы     көрсетілген жазулардың жалпыламасы ретінде X элементі У элементімен R қатыста болады дегенді xRy түрінде жазады.

Бастауыш мектеп математикасында да, орта мектеп математикасында да қатынас ұғымы жалпы түрде енгізілмейді, тек қана әртүлі обьектілер арасындағы нақты қатынастар қарастырылады.

Бастауыш мектеп математикасында сандар арасындағы қатынастарға ерекше көңіл бөлінеді. Оларды қысқа формада жазылған екі айнымалысы бар сөйлем ретінде, таблица толтыру арқылы т.с.с. түрде береді. Қатынастардың көп түрімен бстауыш мектеп оқушылары мазмұнды есептер (мәтіндік есептер) шығаруда кездеседі. Мысалы: «Бір сөредегі кітап саны екінші сөредегіге қарағанда 3 есе артық. Бірінші сөреден 8 кітапты алып, екінші сөреге 5 кітапты қойғанда екінші сөредегі кітап біріншіге қарағанда 17-ге кем болды. Әрбір сөреде қанша кітап болды» Бұл есепті шығарғанда оқушылар «есе артық», «кем» қатынастарын жақсы білуі керек.

 Қатыстың  қасиеттері

Математикада екі обьектінің арасында әртүрлі қатынастар қарастырылатынын тағайындадық. Олардың әр қайсысын қандай да бір Х жиынында қарастырылып, қостардың жиынын береді.

Барлық қатысты қалай зерттеп шығуға болады? Ол үшін қатыстың қасиеттерін анықтап, оларды ортақ қасиеттері бойынша классификациялау керек.

Түзулер жиынында параллель, перпендикуляр тең, ұзын қатыстарын қарастырайық. Осы қатынастардың графын салайық.

Параллельдік және теңдік қатынастарының графтарын қарастырайық. Олардың ілгектері бар. Бұл X жиынында алынған кез - келген кесінді өзіне - өзі тең екендігін көрсетеді. Параллельдік және теңдік қатынастары рефлексивтік қасиетке ие, немесе олар рефлексивті деп аталады.

X жиынындағы кез - келген элемент өзі - өзімен R қатыста болса, онда R қатысы рефлексивті деп аталады.

Егер R қатынасы рефлексивті болса, онда оның графының барлық төбесінде ілгек болады. Бұған кері тұжырым да дұрыс болады, яғни әрбір төбесінде ілгек болатын граф қандай да бір рефлексивті қатыстың графы болады.

Рефлексивтік қасиеті болмайтын да қатыстар болады. Мысалы, перпендикулярлық қатысы: X жиыныныда өзі -өзімен перпендикуляр болатын кесінді болмайды.

Енді кесінділердің параллельдік, перпендикулярлық және теңдік қатыстарының графына көңіл аударайық. Бұл графтардың мынада: егер екі элементті бір бағытта қосатын стрелка болады. Бұл стрелкалар:

1)егер бір кесінді екінші кесіндіге параллель болса, онда екінші кесінді бірінші кесіндіге де параллель,

2) егер бір кесінді  екінші кесіндіге перпендикуляр болса.онда екінші кесінді бірінші кесіндіге де перпендикуляр,

3)егер бір кесінді екішісіне тең болғандығын көрсетеді.

Осы параллельдік, перпендикулярлық, теңдік қатынастары симметриялық қасиетке ие немесе симметриялы деп аталады, яғни R қатынасы симметриялық.

Симметриялық қатынастың графының ерекшелігі мынада: х-тен у-ке қарай баратын стрелкамен қоса,у-тен х-ке баратын стрелкамен қоса у-тен х-ке қарай баратын стрелка болатын граф симметриялық қатыстың графы болады.

Симметриялық қасиеті болмайтын қатысы болады, мысалы, кесінділер арасындағы «ұзын» қатысы.

Осы қатыстардың графын қарастырайық. Оның ерекшелігі - егер стрелка графтың екі төбесін қосса, ол жалғыз болады. «Ұзын» қатысының антисимметриялық қасиеті бар немесе оны антисимметриялы деп атайды.

Егер X жиынындағы әртүрлі х,у элементтері үшін х элементі у-пен R қатыста болып, ал у элементі х элемөнтімен R қатыста болмаса, онда R қатысы антисимметриялы.

Антисимметриялық графтың графигінің мынандай ерекшелігі бар: егер графтың екі төбесі қайтымды стрелкамен қосылған болса, онда бұл стрелка жалған болады. Бұған кері тұжырым да дұрыс болады.

Барлық қатынастар симметриялық, антисиммөтриялық болып бөлінеді деп ойлауға болмайды. Симметриялық та, антисимметриялық та болмайтын қатынастар болады.

Параллельдік, перпендикулярлық, теңдік, ұзын қатыстарының графтарына тағы да көңіл аударайық: мұнда бірінші элементтен екіншіге, екіншіден үшінші элементке баратын стрелкамен қатар бірінші элементтен үшінші элементке баратын стрелка бар болсын.

Графтың бұл қасиеті берілген қатыстардың транзитивтік қасиетке ие болатынын көрсетеді.

Егер X жиынындағы х элементі у-пен R қатыста, ал у элементі z-пен R қатыста болуымен қоса х элементі де z -пен R қатыста болса, онда R транзитивтік қатыс деп аталады.яғни R транзитивті.

Транзитивтік қатыстың графында кез-келген үш элемент үшін, х-тен у-ке және у-тен z-ке баратын стрелқаның болуымен қатар х-тен у-ке баратын стрелка болады. (64-сызба) Осы айтылғанға кері тұжырым да үнемі орындалады.

Мысалы, жанұяда төртбала бар: Айнұр, Балғын, Арнұр, Талант. Осы балалардың арасындағы «туыстық» қатынас транзитивтік болады. Транзитивтік қасиеті болмайтын қатыстар болады. Мысалы, кесінділердің перпендикулярлығы транзитивті болмайды, егер кесіндісі с-ға перпендикуляр болмайды.

Осы көрсетілген қасиеттер қатынастарды салыстыруға 
мүмкіндік береді: жоғарыда қарастырылған параллельдік, 
теңдік     қатынастары рефлексивтік,      симметриялық,

транзитивтік,   ал   «ұзын»   қатысы   антисимметриялы   және транзитивтік.

Эквиленттік қатыс Бөлшектер жиынында «теңдік» қатынасы берілсін. Осы қатыстың қандай қатыстары бар екенін граф арқылы анықтайық:

    1. Графтың барлық төбелерінде ілгек болғандыықтан 
      ол рефлекисвті ;
    2. Графтың төбөлерін қосатын стрелкалар қайтымды 
      болғандықтан ол симметриялы;
    3. х бөлшегі у-ке тең, у бөлшегі z-ке тең болғандықтан 
      х бөлшегі у-ке тең болады. Сондықтан бұл қатынас 
      транзитивті.

Егер X жиынындағы R қатысы рефлексивті.симметриялы және транзитивті болса, онда R эквивалентті қатыс деп аталады. Эквилентті қатынасқа түзулердің параллельдігі, фигуралардың теңдігі мысал бола алады.

Математикада эквиаленттік қатынасы ерекше қарастырады. Бөлшектердің теңдігінің графында үш ішкі жиын көрсетілген; Бұл ішкі жиындар қиылыспайды, ал олардың бірігуі X жиынын береді, яғни теңдік қатысы X жиынын қос -қостан қиылыспайтын кластарға бөледі.

Егер X жиынында эквиваленттік қатынас берілсе, ол осы жиынды қос - қостан қиылыспайтын ішкі жиындарға бөледі.

Кері тұжырым да дүрыс болады: егер X жиынында берілген қандай да бір қатыс оны қос-қостан қиылыспайтын ішкі жиындарғабөлсе,онда бұл қатыс эквивалентті болады.

Егер эквиваленттік қатынастың аты болса, онда кластарға да сол ат беріледі. Мысалы, егер кесінділер жиынында «теңдік» қатысы берілсе, онда кесінділер жиыны тең кесінділер класына бөлінеді. Ұқсастық қатысы үшбұрыштар жиыны ұқсас үшбұрыштар класына бөлінеді.

Жиынды мұндай кластарға бөлудің мынандай маңызы бар: Әрбір эквивалентті класта эквивалентті элементтер бар, яғни бұл элементтердің берілген қатынасқа байланысты бір-бірінен айырмашылығы жоқ. Сондықтан эквиваленттік класс өзінің элементтерімен анықталады.

Тең бөлшектер класының кез - келгенін осы кластағы кез - келген бөлшек арқылы көрсетуге болады. Эквивалентті класты оның бір элементі арқылы көрсету барлық элементтер жиынының орнына осы кластың жеке элементтерін зерттеу жетккілікті екенін көрсетеді. Реттік қатынас        Мынандай мысалдарды қарастырайық

1) Сыныптағы оқушылардың жиынында реттілік орнату үшін оларды бойларына қарай сапқа түрғызуға болады. Практикада бұл процесті жүзеге асыру үшін оқушыларды қос-қостан    салыстырып,   олардың    арасында    бойы    «ұзын» қатынасын қарастырамыз.

Бұл қатынас антисимметриялы және транзитивті

2) Сыныптағы оқушылар жиынын олардың жас мөлшеріне қарап реттеуге де болады, яғни « жасы үлкен» қатысы енгізіледі. Бұл қатынастың да антисимметриялы және транзитивті екенін байқаймыз.

3) Қазақ алфавитіндегі әріптер жиыны «кейін келеді» деген қатынас арқылы реттелген. Бұл қатынас та антисимметриялы және транзитивті.

X  жиынында  берілген   R  қатынасы  антисимметриялы және транзитивті болса, оны реттік қатынас деп атайды. Х={2,8,12,32}    жиынының    элементтерін    «кем»    қатынасы арқылы  реттеуге болады  немесе «еселі»  қатынасымен де реттейік.

«Кем» және «еселі» қатынастары берілген жиынды әртүрлі реттейді. «Кем» қатынасы X жиынындағы кез-келген екі элментті салыстырса, «еселі» қатысында мұндай қасиет жоқ. Мысалы,12 және 8 сандары бұл қасиетпен байланыспағандықтан; 8 саны 12-ге немесе 12 саны 8-ге еселі емөс.

Информация о работе Шамалардың және сандардың қатынасы