Автор работы: Пользователь скрыл имя, 19 Января 2013 в 19:41, курсовая работа
Задание 2
По исходным данным с использованием результатов выполнения задания 1:
1. Установите наличие и характер корреляционной связи между численностью занятых в экономике региона и валовым региональным продуктом, используя метод аналитической группировки.
2. Оцените силу и тесноту корреляционной связи между названными признаками, используя коэффициент детерминации и эмпирическое корреляционное отношение.
3. Оцените статистическую значимость показателя силы связи.
Введение………………..………………………………………….…..…….3
1. Теоретическая часть
1.1. Трудовые ресурсы как объект статистического изучения…….……....4
1.2. Система статистических показателей трудовых ресурсов …..………8
1.3. Методы анализа рядов динамики в статистическом изучении трудовых показателей…………………………………...…………………10
2. Практическая часть…………………………………………..…………16
Задание 1……………………………………………………………………16
Задание 2………………………………………………...………………….26
Задание 3……………………………………………………..……………..35
Задание 4……………………………………………………...…………….40
Заключение……………………………………………………………...….49
Список использованной литературы………………………………...……51
Расчет межгрупповой дисперсии по формуле (11):
=34240,35059/30=1141,35
Расчет эмпирического коэффициента детерминации по формуле (9):
= : =1141,35:1421.2=0.803 или 80,3%
Вывод. 80,3% вариации объема валового продукта обусловлено вариацией численности занятых, а 19,7% – влиянием прочих неучтенных факторов.
Эмпирическое корреляционное отношение оценивает тесноту связи между факторным и результативным признаками и вычисляется по формуле
Таблица 14
Шкала Чэддока
h |
0,1 – 0,3 |
0,3 – 0,5 |
0,5 – 0,7 |
0,7 – 0,9 |
0,9 – 0,99 |
Характеристика силы связи |
Слабая |
Умеренная |
Заметная |
Тесная |
Весьма тесная |
Расчет эмпирического корреляционного отношения по формуле (14):
=√0,803=0,896
Вывод. Согласно шкале Чэддока связь между объемом валового продукта и численностью занятых в экономике регионов является тесной.
3. Оценка статистической
значимости коэффициента
Показатели и рассчитаны для выборочной совокупности, т.е. на основе ограниченной информации об изучаемом явлении. Поскольку при формировании выборки на первичные данные могли иметь воздействии какие-либо случайные факторы, то есть основание полагать, что и полученные характеристики связи , несут в себе элемент случайности. Ввиду этого, необходимо проверить, насколько заключение о тесноте и силе связи, сделанное по выборке, будет правомерными и для генеральной совокупности, из которой была произведена выборка.
Проверка выборочных показателей на их неслучайность осуществляется в статистике с помощью тестов на статистическую значимость (существенность) показателя. Для проверки значимости коэффициента детерминации служит дисперсионный F-критерий Фишера, который рассчитывается по формуле
где n – число единиц выборочной совокупности,
m – количество групп,
– межгрупповая дисперсия,
– дисперсия j-ой группы (j=1,2,…,m),
– средняя арифметическая групповых дисперсий.
Величина рассчитывается, исходя из правила сложения дисперсий:
где – общая дисперсия.
Для проверки значимости показателя рассчитанное значение F-критерия Fрасч сравнивается с табличным Fтабл для принятого уровня значимости и параметров k1, k2, зависящих от величин n и m : k1=m-1, k2=n-m. Величина Fтабл для значений , k1, k2 определяется по таблице распределения Фишера, где приведены критические (предельно допустимые) величины F-критерия для различных комбинаций значений , k1, k2. Уровень значимости в социально-экономических исследованиях обычно принимается равным 0,05 (что соответствует доверительной вероятности Р=0,95).
Если Fрасч>Fтабл , коэффициент детерминации признается статистически значимым, т.е. практически невероятно, что найденная оценка обусловлена только стечением случайных обстоятельств. В силу этого, выводы о тесноте связи изучаемых признаков, сделанные на основе выборки, можно распространить на всю генеральную совокупность.
Если Fрасч<Fтабл, то показатель считается статистически незначимым и, следовательно, полученные оценки силы связи признаков относятся только к выборке, их нельзя распространить на генеральную совокупность.
Фрагмент таблицы Фишера критических величин F-критерия для значений =0,05; k1=3,4,5; k2=24-35 представлен ниже:
k2 | ||||||||||||
k1 |
24 |
25 |
26 |
27 |
28 |
29 |
30 |
31 |
32 |
33 |
34 |
35 |
3 |
3,01 |
2,99 |
2,98 |
2,96 |
2,95 |
2,93 |
2,92 |
2,91 |
2,90 |
2,89 |
2,88 |
2,87 |
4 |
2,78 |
2,76 |
2,74 |
2,73 |
2,71 |
2,70 |
2,69 |
2,68 |
2,67 |
2,66 |
2,65 |
2,64 |
5 |
2,62 |
2,60 |
2,59 |
2,57 |
2,56 |
2,55 |
2,53 |
2,52 |
2,51 |
2,50 |
2,49 |
2,48 |
Расчет дисперсионного F-критерия Фишера для оценки =80,3%, полученной при = 1421.2 и = 1141,35
Fрасч=
Табличное значение F-критерия при = 0,05:
n |
m |
k1=m-1 |
k2=n-m |
Fтабл ( ,5, 25) |
30 |
5 |
4 |
25 |
2,60 |
Вывод: поскольку Fрасч<Fтабл, то величина коэффициента детерминации =80,3% признается незначимой (случайной) с уровнем надежности 95% и, следовательно, найденные характеристики связи между признаками Кол-во численности занятых в экономике регионов и Объем валового продукта правомерны не только для выборки, но и для всей генеральной совокупности банков.
Задание 3
По результатам выполнения задания 1 с вероятностью 0,997 определите:
1. Ошибку выборки средней численности занятых в экономике региона и границы, в которых будет находиться средний размер средней численности занятых в экономике для генеральной совокупности регионов.
2. Ошибку выборки доли регионов со средней численностью занятых в экономике 631 тыс. чел. и более, а также границы, в которых будет находиться генеральная доля.
1. Определение
ошибки выборки для средней
численности населения
Применение выборочного метода наблюдения всегда связано с установлением степени достоверности оценок показателей генеральной совокупности, полученных на основе значений показателей выборочной совокупности. Достоверность этих оценок зависит от репрезентативности выборки, т.е. от того, насколько полно и адекватно представлены в выборке статистические свойства генеральной совокупности. Как правило, генеральные и выборочные характеристики не совпадают, а отклоняются на некоторую величину ε, которую называют ошибкой выборки (ошибкой репрезентативности).
Значения признаков единиц, отобранных из генеральной совокупности в выборочную, всегда случайны, поэтому и статистические характеристики выборки случайны, следовательно, и ошибки выборки также случайны. Ввиду этого принято вычислять два вида ошибок - среднюю и предельную .
Средняя ошибка выборки - это среднее квадратическое отклонение всех возможных значений выборочной средней от генеральной средней, т.е. от своего математического ожидания M[ ].
Величина средней ошибки выборки рассчитывается дифференцированно (по различным формулам) в зависимости от вида и способа отбора единиц из генеральной совокупности в выборочную.
Для собственно-случайной и механической выборки с бесповторным способом отбора средняя ошибка выборочной средней определяется по формуле
, (15)
где – общая дисперсия выборочных значений признаков,
N – число единиц в генеральной совокупности,
n – число единиц в выборочной совокупности.
Предельная ошибка выборки определяет границы, в пределах которых будет находиться генеральная средняя:
где – выборочная средняя,
– генеральная средняя.
Границы задают доверительный интервал генеральной средней, т.е. случайную область значений, которая с вероятностью Р гарантированно содержит значение генеральной средней. Эту вероятность Р называют доверительной вероятностью или уровнем надёжности.
В экономических исследованиях чаще всего используются доверительные вероятности Р= 0.954, Р= 0.997, реже Р= 0,683.
В математической статистике доказано, что предельная ошибка выборки кратна средней ошибке µ с коэффициентом кратности t (называемым также коэффициентом доверия), который зависит от значения доверительной вероятности Р. Для предельной ошибки выборочной средней это теоретическое положение выражается формулой
(17)
Значения t вычислены заранее для различных доверительных вероятностей Р и протабулированы (таблицы функции Лапласа Ф). Для наиболее часто используемых уровней надежности Р значения t задаются следующим образом (табл.15):
Таблица 15
Доверительная вероятность P |
0,683 |
0,866 |
0,954 |
0,988 |
0,997 |
0,999 |
Значение t |
1,0 |
1,5 |
2,0 |
2,5 |
3,0 |
3,5 |
По условию демонстрационного примера выборочная совокупность насчитывает 30 регионов выборка 30% механическая, следовательно, генеральная совокупность включает 100 регионв. Выборочная средняя , дисперсия определены в Задании 1 (п. 3). Значения параметров, необходимых для решения задачи, представлены в табл. 16:
Таблица 16
Р |
t |
n |
N |
||
0,954 |
3 |
30 |
100 |
583,4 |
9408 |
Расчет средней ошибки выборки по формуле (15):
тыс.чел.
Расчет предельной ошибки выборки по формуле (17):
=3*14,816=44,448 тыс.чел
Определение по формуле (16) доверительного интервала для генеральной средней:
583,4-44,448 583,4+44,448
539,952 627,848
Вывод. На основании проведенного выборочного обследования численности занятых в экономике регионов с вероятностью 0,997 можно утверждать, что для генеральной совокупности регионов средняя численность занятых в экономике регионов находится в пределах от 539,952 тыс.чел. до 627,848 тыс.чел.
2. Определение ошибки выборки для доли численности занятых в экономике регионов 631 тыс.чел. и выше, а также границ, в которых будет находиться генеральная доля
Доля единиц выборочной совокупности, обладающих тем или иным заданным свойством, выражается формулой
, (18)
где m – число единиц совокупности, обладающих заданным свойством;
n – общее число единиц в совокупности.
Для собственно-случайной и механической выборки с бесповторным способом отбора предельная ошибка выборки доли единиц, обладающих заданным свойством, рассчитывается по формуле
, (19)
где w – доля единиц совокупности, обладающих заданным свойством;
(1-w) – доля единиц совокупности, не обладающих заданным свойством,
N – число единиц в генеральной совокупности,
n– число единиц в выборочной совокупности.
Предельная ошибка выборки определяет границы, в пределах которых будет находиться генеральная доля р единиц, обладающих заданным свойством:
По условию Задания 3 исследуемым свойством является равенство или превышение регионов с численностью занятых в экономике выше 631 тыс.чел.
Информация о работе Методы анализа рядов динамики в статистическом изучении трудовых показателей