Автор работы: Пользователь скрыл имя, 12 Апреля 2014 в 20:50, курсовая работа
Сельскохозяйственное производство – важнейшая отрасль народного хозяйства России, одной из основных задач которой является надёжное обеспечение населения продуктами питания.
Молоко – единственный пищевой продукт, который обеспечивает организм всеми питательными веществами. Одной из основных задач сельского хозяйства является увеличение валового надоя молока и повышение продуктивности коров
В экономике молочного скотоводства первостепенное значение имеет рост среднегодовых удоев. Увеличение валовых надоев от того же поголовья – важный фактор повышения окупаемости затрат путем сокращения доли поддерживающей части корма и затрат труда на единицу продукции. Валовой продукцией молочного скотоводства является общий объем продукции отрасли, произведенной за тот или иной период времени.
Дисперсионный анализ — это анализ изменчивости признака под влиянием каких-либо контролируемых переменных факторов. В зарубежной литературе дисперсионный анализ часто обозначается как ANOVA, что переводится как анализ вариативности (Analysis of Variance). Автором метода является Рональд Фишер (1890 – 1968). В дисперсионном анализе исследование исходит из предположения, что одни переменные могут рассматриваться как причины, а другие — как следствия. Переменные первого рода считаются факторами, а переменные второго рода — результативными признаками. В этом отличие дисперсионного анализа от прямолинейного корреляционного анализа, в котором мы исходим из предположения, что изменения одного признака просто сопровождаются определенными изменениями другого.
В дисперсионном анализе возможны два принципиальных пути разделения всех исследуемых переменных на независимые переменные (факторы) и зависимые переменные (результативные признаки).
В дисперсионном анализе общая вариация подразделяется на составляющие и производится сравнение этих составляющих. Испытуемая гипотеза состоит в том, что если данные каждой группы представляют случайную выборку из нормальной генеральной совокупности, то величины всех частных дисперсий должны быть пропорциональны своим степеням свободы и каждую из них можно рассматривать как оценку генеральной дисперсии.
Дисперсионный анализ часто применяют совместно с аналитической группировкой. В этом случае данные подразделяются на группы по значениям признака-фактора, вычисляются значения средних величин результативного признака в группах, считается, что различия в их значениях определяются различиями в значениях фактора. Задача состоит в оценке существенности различий между средними значениями результативного признака в группах.
Дисперсионный анализ позволяет нам констатировать изменение признака, но при этом не указывает направление, этих изменений.
Метод дисперсионного анализа становится незаменимым только когда мы исследуем одновременное действие двух (или более) факторов, поскольку он позволяет выявить взаимодействие факторов в их влиянии на один и тот же результативный признак.
Критерий Фишера представляет собой отношение двух дисперсий:
Где S12 и S22 рассматриваются в качестве оценок одной и той же генеральной дисперсии.
При вычислении дисперсионного отношения в числителе берется большая из оценок S12 и S22 , поэтому величина дисперсионного отношения может быть равна или больше единицы. Если или F-критерий равен 1, то это указывает на равенство дисперсий, и вопрос об оценке существенности их расхождения снимается. Если же величина дисперсионного отношения больше единицы, то возникает необходимость оценить случайно ли расхождение между дисперсиями. При этом очевидно, что чем больше величина дисперсионного отношения, тем значительнее расхождение между дисперсиями.
Для определения границ случайных колебаний отношения дисперсий Р.Фишером разработаны специальные таблицы F-распределения. В этих таблицах указываются предельные значения F-критерия для различных комбинаций числа степеней свободы числителя k1 и знаменателя k2, которые могут быть превзойдены с вероятностью 0,05 или 0,01. Число степеней свободы k1, соответствующее большей дисперсии, определяет столбец таблицы, а число степеней свободы k2, соответствующее дисперсии S22 , строку таблицы.
Рассчитанная по фактическим данным величина дисперсионного отношения сопоставляется с соответствующей данному сочетанию числа степеней свободы числителя и знаменателя и принятому уровню значимости табличной величиной дисперсионного отношения.
Гипотеза, которая проверяется с помощью этих таблиц, состоит в том, что сравниваемые дисперсии характеризуют вариацию признака в совокупностях, отобранных из одной и той же нормально распределенной генеральной совокупности, или же отобранных из нормально распределенных генеральных совокупностей с одинаковой дисперсией.
Если фактическое дисперсионное отношение будет больше табличного, то лишь с вероятностью 0,05 или 0,01 можно утверждать, что различие между дисперсиями определяется случайными факторами. Однако события, имеющие столь малую вероятность, считаются практически невозможными, а потому в этом случае с вероятностью можно утверждать существенность различий в величине дисперсий.
Если же фактическое значение дисперсионного отношения будет меньше соответствующего табличного значения, например, при 1%-ном уровне значимости, то с вероятностью 99% можно утверждать, что расхождение между дисперсиями несущественно.
Дисперсионный анализ приобретает самостоятельное значение при оценке существенности расхождения нескольких средних, что позволяет проверить гипотезу о наличии связи между признаком, положенном в основу группировки, и результативным признаком. В зависимости от количества факторов, определяющих вариацию результативного признака, дисперсионный анализ подразделяется на однофакторный и многофакторный.
Для оценки существенности влияния уровня специализации на продуктивность коров в хозяйствах Воронежской области, обнаруженной методом группировки, произведем однофакторный дисперсионный анализ продуктивности коров по уровню специализации.
Корреляция – это статистическая зависимость между случайными величинами, не имеющими строго функционального характера, при которой изменение одной из случайных величин приводит к изменению математического ожидания другой.
В статистике принято различать следующие варианты зависимостей.
Корреляционный анализ имеет своей задачей количественное определение тесноты связи между двумя признаками (при парной связи) и между результативным и множеством факторных признаков (при многофакторной связи).
Теснота связи количественно выражается величиной коэффициентов корреляции. Коэффициенты корреляции, представляя количественную характеристику тесноты связи между признаками, дают возможность определять «полезность» факторных признаков при построении уравнений множественной регрессии. Величина коэффициента корреляции служит также оценкой соответствия уравнения регрессии выявленным причинно – следственным связям.
Первоначально исследования корреляции проводились в биологии, а позднее распространились и на другие области, в том числе на социально-экономическую. Одновременно с корреляцией начала использоваться и регрессия. Корреляция и регрессия тесно связаны между собой: первая оценивает силу (тесноту) статистической связи, вторая исследует ее форму. Та и другая служат для установления соотношения между явлениями, для определения наличия или отсутствия связи.
Корреляционно-регрессионный анализ как общее понятие включает в себя измерение тесноты, направления связи и установление аналитического выражения (формы) связи (регрессионный анализ).
Регрессионный анализ заключается в определении аналитического выражения связи, в котором изменение одной величины (называемой зависимой или результативным признаком) обусловлено влиянием одной или нескольких независимых величин (факторов), а множество всех прочих факторов, также оказывающих влияние на зависимую величину, принимается за постоянные и средние значения. Регрессия может быть однофакторной (парной) и многофакторной (множественной).
Уравнение регрессии, или статистическая модель связи социально-экономических явлений, выражаемая функцией:
,
где У – результативный признак,
х1, х2,х3,…, хk – факторные признаки, является достаточно адекватным реальному моделируемому явлению или процессу в случае соблюдения следующих Требования построения.
Поскольку корреляционная связь является статистической, первым условием возможности ее изучения является общее условие всякого статистического исследования: наличие данных по достаточно большой совокупности явлений. По отдельным явлениям можно получить совершенно превратное представление о связи признаков, ибо в каждом отдельном явлении значения признаков кроме закономерной составляющей имеют случайное отклонение (вариацию). Например, сравнивая два хозяйства, одно из которых имеет больше поголовья коров, по уровню продуктивности, можно обнаружить, что продуктивность выше в хозяйстве с меньшим количеством голов. Ведь продуктивность коров зависит от сотен факторов и при том же самом количестве поголовья коров может быть и выше, и ниже. Но если сравнивать большое число хозяйств с большим количеством голов и большое число - с меньшим, то средняя продуктивность коров в первой группе окажется выше и станет возможным измерить достаточно точно параметры корреляционной связи.
Какое именно число явлений достаточно для анализа корреляционной и вообще статистической связи, зависит от цели анализа, требуемой точности и надежности параметров связи, от числа факторов, корреляция с которыми изучается. Обычно считают, что число наблюдений должно быть не менее чем в 5-6, а лучше - не менее чем в 10 раз больше числа факторов. Еще лучше, если число наблюдений в несколько десятков или в сотни раз больше числа факторов, тогда закон больших чисел, действуя в полную силу, обеспечивает эффективное взаимопогашение случайных отклонений от закономерного характера связи признаков.
Вторым условием закономерного проявления корреляционной связи служит условие, обеспечивающее надежное выражение закономерности в средней величине. Кроме уже указанного большого числа единиц совокупности для этого необходима достаточно качественная однородность совокупности. Нарушение этого условия может извратить параметры корреляции.
Иногда, как условие корреляционного анализа, выдвигают необходимость подчинения распределения совокупности по результативному и факторным признакам нормальному закону распределения вероятностей. Это условие связано с применением метода наименьших квадратов при расчете параметров корреляции: только при нормальном распределении метод наименьших квадратов дает оценку параметров, отвечающую принципам максимального правдоподобия. На практике эта предпосылка чаще всего выполняется приближенно, но и тогда метод наименьших квадратов дает неплохие результаты.
Однако при значительном отклонении распределений признаков от нормального закона нельзя оценивать надежность выборочного коэффициента корреляции, используя параметры нормального распределения вероятностей или распределения Стьюдента.
Еще одним спорным вопросом является допустимость применения корреляционного анализа к функционально связанным признакам. Можно ли, например, построить уравнение корреляционной зависимости размеров выручки от продажи молока, от объема продажи и цены? Ведь произведение объема продажи и цены равно выручке в каждом отдельном случае. Как правило, к таким жестко детерминированным связям применяют только индексный метод анализа. Однако на этот вопрос можно взглянуть и с другой точки зрения. При индексном анализе выручки предполагается, что количество проданного молока и его цена независимы друг от друга, потому-то и допустима абстракция от изменения одного фактора при измерении влияния другого, как это принято в индексном методе. В реальности количество и цена не являются вполне независимыми друг от друга.
Корреляционно-регрессионный анализ учитывает межфакторные связи, следовательно, дает нам более полное измерение роли каждого фактора: прямое, непосредственное его влияние на результативный признак; косвенное влияние фактора через его влияние на другие факторы; влияние всех факторов на результативный признак. Если связь между факторами несущественна, индексным анализом можно ограничиться. В противном случае его полезно дополнить корреляционно-регрессионным измерением влияния факторов, даже если они функционально связаны с результативным признаком.
Рис. 2. Фактическое и теоретическое поле зависимости между продуктивностью и уровнем кормления
Построив график, мы подтвердили наше логическое предположение, т.к. точки концентрируются из левого нижнего угла в правый верхний угол, то исходная эмпирическая линия (y) близка к прямой, а это значит, что связь между уровнем кормления и удоем молока носит прямолинейный характер.
Регрессионный анализ заключается в определении аналитического выражения связи, в котором изменение одной величины (называемой зависимости, или результативным признаком) обусловлено влиянием одной или нескольких независимых величин (факторов), а множество всех прочих факторов, также оказывающих влияние на зависимую величину, принимается за постоянные и средние значения. Предварительный теоретический анализ и графический метод показали прямолинейный характер, изучаемой связи, т.е. линейную регрессию, которая выражается уравнением прямой (линейно функцией).