Усовершенствование тормозной камеры

Автор работы: Пользователь скрыл имя, 24 Января 2014 в 13:35, дипломная работа

Описание работы

Объектом дипломного проекта является тормозная привод с пружинным энергоаккумулятором автомобиля КамАЗ.
В процессе работы проведен обзор и анализ конструкций тормозных камер с пружинным энергоаккумулятором, зарубежного и отечественного производства, разработана конструкция усовершенствованного энергоаккумулятора, технологическая карта на техническое обслуживание тормозного пневмопривода, безопасность и экологичность проекта и определена технико-экономическая эффективность проекта.

Содержание работы

ВВЕДЕНИЕ 9
1 АНАЛИЗ ПРОИЗВОДСТВЕННОЙ ДЕЯТЕЛЬНОСТИ УГАТП–4 ФИЛИАЛ ГУП «БАШАВТОТРАНС»

1.1 Общая характеристика предприятия 11
1.2 Организация и технология ремонта машин в мастерской УГАТП – 4 14
1.2.1 Характеристика производственного корпуса 14
1.2.2 Технология ремонта автомобилей УГАТП – 4 16
1.2.3 Организация технического контроля 18
1.3 Технико-экономические показатели работы УГАТП-4 18
1.4 Выводы по анализу и задачи проекта 22
2 ОБЗОР И АНАЛИЗ КОНСТРУКЦИЙ ТОРМОЗНЫХ КАМЕР С ПРУЖИННЫМ ЭНЕРГОАККУМУЛЯТОРОМ 24
2.1 Пневматический энергоаккумулятор пружинно поршневого типа 25
2.2 Комбинированные тормозные камеры с пружинным энергоаккумулятором 27
2.2.1 Пружинный энергоаккумулятор с устройством механического растормаживания без деформации силовой пружины 30
2.2.2 Пружинный энергоаккумулятор с устройством гидравлического растормаживания 31
2.2.3 Тормозная камера с пружинным энергоаккумулятором типа 12/20 автобуса ЛиАЗ-5256

2.3 Выводы 34

3 УСОВЕРШЕНСТВОВАННАЯ КОНСТРУКЦИЯ ПРУЖИННОГО ЭНЕРГОАККУМУЛЯТОРА АВТОМОБИЛЯ КамАЗ 35

3.1 Схема и принцип действия предлагаемой конструкции 35
3.2 Управление усовершенствованной конструкцией энергоаккумулятора 36
4 РАСЧЕТ ДЕТАЛЕЙ УСОВЕРШЕНСТВОВАННОЙ ТОРМОЗНОЙ КАМЕРЫ С ПРУЖИННЫМ ЭНЕРГОАККУМУЛЯТОРОМ 40
5.1 Расчет прочности фиксирующего механизма 40
5.2 Расчет винтовой пары приспособления для механического растормаживания 42
5.3 Расчет заклепочного соединения направляющей поршня 43
5.4 Расчет заклепочного соединения корпуса электромагнита 45
5.5 Расчет пружины фиксирующего устройства 46
5.6 Расчет электромагнита для управления механизмом фиксации поршня 48
5.6.1 Расчет параметров магнитопровода 49
5.6.2 Расчет параметров обмотки электромагнита 50
5 РАЗРАБОТКА ТЕХНОЛОГИЧЕСКОЙ КАРТЫ ТЕХНИЧЕСКОГО ОБСЛУЖИВАНИЯ ТОРМОЗНОЙ СИСТЕМЫ АВТОМОБИЛЯ КамАЗ 53
6 БЕЗОПАСНОСТЬ И ЭКОЛОГИЧНОСТЬ ПРОЕКТА 56
6.1 Обеспечение условий и безопасности труда на производстве 56
6.2 Мероприятия по охране окружающей среды 62
6.3 Мероприятия по защите населения и материальных ценностей в чрезвычайных ситуациях 63

7 ТЕХНИКО-ЭКОНОМИЧЕСКАЯ ЭФФЕКТИВНОСТЬ ПНЕВМОПРИВОДА С УСОВЕРШЕНСТВОВАННЫМ ЭНЕРГОАККУМУЛЯТОРОМ

7.1 Расчет статьи затрат на внедрение конструкции 68
7.2 Расчет статьи доходов от внедрения проекта 71
7.3 Расчет показателей экономической эффективности 73
ЗАКЛЮЧЕНИЕ 75
БИБЛИОГРАФИЯ 76

Файлы: 17 файлов

Лист 10 Экономия.cdw

— 10.64 Кб (Скачать файл)

1.cdw

— 28.54 Кб (Скачать файл)

2.cdw

— 30.50 Кб (Скачать файл)

3.cdw

— 26.45 Кб (Скачать файл)

4.cdw

— 17.93 Кб (Скачать файл)

5.cdw

— 16.34 Кб (Скачать файл)

Готовый.doc

— 2.42 Мб (Скачать файл)

 

По результатам расчётов строятся диаграммы изменения Ф, Фо, Фё, ПТ за последние 3 года. Из таблицы 1.4 видно что, производительность труда с каждым годом растёт. Это привело к увеличению в 2004 году валового дохода предприятия на 6306,9 тыс.руб. по сравнению  2002 годом.

1.4 Выводы по анализу  и задачи проекта

             В соответствии с представленными данными по УГАТП – 4, можно сделать некоторые выводы.

При сборе материалов для дипломного проектирования замечен большой недостаток в организации планирования технико-экономических показателей предприятия. Отсутствие планирования является фактором, не позволяющим объективно оценить динамику роста или падения этих показателей.


Проведя анализ технико-экономических показателей можно сказать, что в настоящее время УГАП-4 не имеет прибыли от своей деятельности. Главная причина этого-невыполнение запланированного объема перевозок вследствие частого выхода из строя подвижного состава. Второй, и не менее важной причиной убытков предприятия является неправильная организация ремонта подвижного состава, что естественно во много раз увеличивает его себестоимость. Тем не менее, при совершенствовании организации и технологии ремонта подвижного состава, экономическое состояние предприятия может улучшиться.

В 2004 году предприятие  было реорганизовано из Дочернего в  филиал ГУП “Башавтотранс”.  Полностью  сменилось руководство предприятием. Автомобильный парк пополнился  относительно новым подвижным составом из ликвидированного УГАП 5.

 

 

 

 

 

 

 

 

 

 

 

2 ОБЗОР И АНАЛИЗ КОНСТРУКЦИЙ тормозных камер с пружинным энергоаккумулятором


 

Тормозная камера с пружинным  энергоаккумулятором предназначена  для осуществления торможения транспортного  средства в рабочем режиме и удержания автомобиля в режиме стоянки. Кроме рабочего и стояночного режимов энергоаккумулятор может выполнять функцию запасного тормоза, при выходе из строя рабочего тормозного контура. Среди различных конструкций и типов энергоаккумуляторов есть одна особенность – практически у всех источником, накапливающим механическую энергию, является упругий элемент, выполненный в виде витой пружины. В рабочем состоянии (расторможенном) пружина сжата и удерживается в таком положении при помощи давления поршня оказываемым на него сжатым воздухом. Если же необходимо включить стояночный тормоз, то необходимо выпустить сжатый воздух, удерживающий деформированную пружину. Основные типы энергоаккумуляторов отличаются друг от друга способом механического растормаживания стояночного тормоза.

Тормозные камеры с аккумулятором  механической энергии явились следствием перехода отечественного и европейского автомобилестроения к пневматическим тормозным приводам второго поколения. Пружинные энергоаккумуляторы пришли на смену центральному трансмиссионному тормозу, неспособному удерживать на уклонах потяжелевшие автотранспортные средства. Применение новых тормозных приборов позволило в несколько раз повысить надежность, безопасность и конъюнктурность транспортных средств, но это также отразилось на усложнении конструкции тормозного пневмопривода. С усложнением тормозного привода возросли требования к эксплуатации, качеству проведения ТО и ремонта пневмопривода.

В таблице 2.1 приведены  основные параметры различных типов  исполнительных приборов тормозного пневмопривода.

 

Тип

 

Активная

площадь,

см2

 

Объем,

см3

 

Диаметр, мм

 

Ход штока,

мм

Тол-щина

мем-

браны,

мм

 

Применяется

на автомобилях

наруж-ный

заделки

мем-браны

опор-ного

диска

макси-

маль-

ный

рабо-чий

 

9

12

16

20

24

30

36

 

58

77

103

129

155

195

232

 

330

430

640

800

970

1310

1880

 

146

150

160

172

184

206

235

 

110

126

140

150

160

182

 

80

80

100

110

120

140

 

45

45

57

57

57

64

76

 

35

35

45

45

45

57

64

 

4

4

4

4

4

4

 

КАЗ

ЛиАЗ

ЗИЛ

ЗИЛ

ЗИЛ, КамАЗ





 Таблица 2.1 Параметры  исполнительных тормозных приборов основных типов, применяемых на автобусах и автомобилях

 

 

Основные типы конструкций тормозных камер с энергоаккумуляторами приведены ниже.

 

2.1 Пневматический энергоаккумулятор пружинно поршневого типа

Данный вид ПЭА относится  к начальному этапу внедрения тормозных систем второго поколения. Конструкция такого устройства представляла собой систему, состоящую из мощной силовой пружины и подвижного пневматического элемента. Типичная конструкция такого ПЭА показана на рисунке 2.1.

 

Рисунок 2.1  Схема пневматического  пружинного энергоаккумулятора


1 – вход для подвода  сжатого воздуха; 2 – поршень; 3 –  пружина; 4 – шток;

5 – толкатель; 6 – гайка растормаживния.

В расторможенном состоянии  на вход 1 подается сжатый воздух. Воздействуя на поршень 2, сжатый воздух воздействует на силовую пружину 3, вследствие чего шток 4 вместе с толкателем 5 находятся в крайнем левом положении, сила на нем отсутствует и приводимый ПЭА тормоз растормаживается. При выпуске сжатого воздуха  из входа 1 шток 4 под усилием пружины 3 перемещается вправо и толкателем 5, вставленным в отверстие штока, приводит в действие тормозной механизм. Таким образом, сила на штоке ПЭА создается силовой пружиной, а пневматический элемент ПЭА используется для удержания пружины в сжатом исходном состоянии при растормаживании. Для растормаживания при отсутствии сжатого воздуха следует отвернуть гайку 6 с контргайкой.

Силовая пружина в ПЭА находится  в предварительно сжатом состоянии  и сила, создаваемая на штоке, зависит  от его хода. Статическая характеристика ПЭА – зависимость усилия F от хода штока l показана на рисунке 2.2.

 

 


Рисунок 2.2  Силовая характеристика пневматического пружинного энергоаккумулятора.

Давление, которое удерживает ПЭА  в расторможенном состоянии, обычно равно 4,5 – 5,5 кгс/см2. Пневматический элемент ПЭА может быть поршневым или мембранным. Поршневые ПЭА имеет ход от 30 до110 мм, мембранные 50 – 60 мм.

2.2 Комбинированные тормозные  камеры с пружинными энергоаккумуляторами

Наибольшее распространение получили в последние годы комбинированные исполнительные органы, состоящие из тормозной камеры и пружинного энергоаккумулятора. Такая комбинация позволила одним пневмоаппаратом выполнять функции исполнительного органа трех тормозных систем – рабочей, запасной и стояночной (в связи с этим один из вариантов этой комбинации получил название «тристоп»).

Конструктивно обе части такого пневмоаппарата могут быть выполнены  в виде цилиндра или в виде камеры.

Обе части располагаются последовательно, так как действуют на один шток. Схема тормозной камеры с поршневым ПЭА автомобиля КамАЗ показана на рисунке 2.3.


 

Рисунок 2.3  Схема тормозной  камеры с поршневым ПЭА: 1 – поршень; 2 – силовая пружина; 3 – винт механического  растормаживания; 4 – патрубок цилиндра; 5 – толкатель; 6 – диафрагма; 7 – шток.

При выключенной стояночной тормозной  системе сжатый воздух постоянно  подводится в поршневое пространство пружинного энергоаккумулятора. Поршень 1 с толкателем 5 находятся в крайнем  левом положении, силовая пружина  полностью сжата.

При торможении рабочей  тормозной системы сжатый воздух от тормозного крана подается в полость  над мембраной 6. Мембрана прогибаясь, воздействует через шток 7 на тормозной  механизм. Таким образом торможение происходит так же, как с обычной  тормозной камерой.

При включении запасной или стояночной тормозной системы, т. е. при выпуске воздуха в  атмосферу с помощью ручного  крана из-под поршня 1, пружина 2 возвращается в исходное положение, и поршень 1 перемещается вправо. Толкатель 5 воздействуя  через мембрану на шток 7, который перемещаясь поворачивает рычаг тормозного механизма. Происходит затормаживание автомобиля.

ПЭА имеет встроенный механизм аварийного растормаживания. При вывертывании винт 3 перемещается вверх и воздействует на поршень 1. Поршень вместе с толкателем 5 перемещается в крайнее левое положение и сжимает пружину 2, в следствии чего ПЭА растормаживается.


Пружинные энергоаккумуляторы по размерности  классифицируются так же, как и  тормозные камеры. Характеристики унифицированных  тормозных камер с ПЭА типа 20/20 и 24/24 (первая цифра в обозначении – размерность камеры, вторая – размерность ПЭА), применяемых на автомобилях ЗИЛ и КамАЗ представлены на рисунке 2.4.

Рисунок 2.4  Силовые  характеристики тормозных камер  с ПЭА, применяемых на автомобилях ЗИЛ и КамАЗ: 1 – тормозные камеры; 2 – пружинные энергоаккумуляторы.

Вариантов конструкций  комбинированных исполнительных органов  с ПЭА выпускалось довольно много, так как доводка уязвимых мест конструкции шла различными путями. Одним из таких направлений стало изменение способа механического растормаживания.

 

2.2.1 Пружинный энергоаккумулятор  с устройством механического растормаживания без деформации силовой пружины


Известны ПЭА, в которых  в случае отсутствия сжатого воздуха  ручное винтовое приспособление позволяет растормозить энергоаккумулятор без сжатия силовой пружины. Принципиальная схема такой камеры приведена на рисунке 2.5.

 

 

 

 

 

 

 

 

 

 

 

 

Рисунок 2.5  Схема пружинного энергоаккумулятора с устройством механического растормаживания без деформации силовой пружины: 1 – силовая пружина; 2 – винт механического растормаживания; 3 – поршень пружины; 4 – штанга поршня; 5 – диафрагма; 6 – шток; 7 – корпус.

В случае отсутствия давления воздуха в пневмосистеме оттормаживание штока 6 становится невозможным. В таком случае энергоаккумулятор можно растормозить при помощи винтового приспособления. Для оттормаживания необходимо выкрутить винт 2, вследствие чего штанга поршня 4 смещается влево. Это обеспечивает оттормаживание штока 6.

Такой способ механического  растормаживания позволяет ускорить растормаживание ПЭА вследствие облегчения процесса выкручивания винта 2. Эта цель достигается тем, что усилие пружины 1, передающееся через винт 2, способствует его выкручиванию из поршня 3. Однако такой тип камер имеет

ряд недостатков. К ним относятся усложнение конструкции, увеличение металлоемкости, повышенные требования к прочности резьбового узла.


2.2.2  Пружинный энергоаккумулятор с устройством гидравлического растормаживания

С целью облегчения механического  растормаживания ПЭА, можно использовать конструкцию энергоаккумулятора с устройством гидравлического растормаживания, которая была предложена в 1983 году для автобусов и грузовых автомобилей Н. Н. Алекса (Авторское свидетельство N (21) 3626605/27).

Одним из недостатков камер с ПЭА является затруднительный процесс механического растормаживания.

Целью изобретения является облегчение растормаживания путем  исключения необходимости отдельного ручного управления устройствами растормаживания  каждой тормозной камеры транспортного средства. На рисунке 2.6 показано устройство ПЭА с гидравлическим растормаживанием.

Рисунок 2.6  Схема пружинного энергоаккумулятора с устройством гидравлического растормаживания: 1 – поршень пружины; 2 – силовая пружина; 3 – поток из гидропривода; 4 – полый шток; 5 – полый цилиндр; 6 – диафрагма; 7 – шток.

В случае отказа пневматического тормозного привода давление под поршнем 1 отсутствует  и шток 7 через полый цилиндр 5 и поршень 1 удерживается пружиной 2 в заторможенном положении. Для оттормаживания жидкость из открытого гидропривода через полый шток 4 подается в полость цилиндра 5. Под действием давления жидкости полый цилиндр 5 смещается влево и через поршень 1 сжимает пружину 2. Это обеспечивает оттормаживание штока 7.


Предлагаемая конструкция  может облегчить растормаживание автомобиля в случае отказа пневмосистемы, однако требует наличия дополнительной гидравлической системы, что приводит к усложнению конструкции и технологии проведения технического обслуживания.

Лист 1 АХД (А1).cdw

— 41.06 Кб (Скачать файл)

Лист 1 АХД (А1) 2.cdw

— 38.38 Кб (Скачать файл)

Лист 2 Обзор граф.cdw

— 46.22 Кб (Скачать файл)

Лист 3 Предлагаемая схема.cdw

— 24.34 Кб (Скачать файл)

Лист 3,1 Предлагаемая схема.cdw

— 33.13 Кб (Скачать файл)

Лист 4 Общая схема.cdw

— 44.83 Кб (Скачать файл)

Лист 5 Эл схема.cdw

— 33.41 Кб (Скачать файл)

Лист 6 Сборочный.cdw

— 145.01 Кб (Скачать файл)

Лист 7 Стоп кран.cdw

— 99.14 Кб (Скачать файл)

Лист 9 ТК.cdw

— 75.76 Кб (Скачать файл)

Информация о работе Усовершенствование тормозной камеры