Автор работы: Пользователь скрыл имя, 27 Августа 2012 в 15:13, курс лекций
С того вр-ни как эк-ка стала самост наукой, исслед-ли пытаются дать предст-ия о возм-ых путях разв-ия эк-ки, предвидеть буд знач эк пок-лей, найти инст-ты, позволяющие изм-ть ситуацию в желат-м напр-ии и спрогнозир-ть ее развитие.
Но разл эк школы предлаг-т разные, а зачастую противопол-е методы решения этих задач. Пол-ки или управ-ие выбир-т 1 из предлаг-х методов решений. В рез-теполуч-т какой-то эффект. Плох он или хорош и м.б. дьбиться лучшего рез-та проверить затруд-но, т.к. эк ситуация никогда не повт-ся точно, т.е. нет возм-ти применить 2 разные стратегии при одних и тех же усл-ях и сравнить конеч рез-ты.
ỹi=bo+b1xi1+b2xi2+…+bmxim
yi- ỹi=ei
А тогда по методу МНК мы м опр-ть ф-ию Q=∑ei²= ∑(yi-bo-b1xi1-b2xi2-…-bmxim)²
И найти от этой ф-ии част производные по ее парам-м (коэф-там ур-ия).
Получаем сис-му из m+1 ур-ия с m+1 неизв-м. Если ее приравнят к 0, то получим сис-му лин ур-ий отн-но коэф-в ур-ия регр-ии, кот-ая всегда б иметь единств решение, т.к. мы м добиться того, чтобы опр-ль сис-мы был ≠0.
Но
в тех случаях, когда кол-во объясняющ
перем-х m>2, решение таких сис-м нач-т
вызывать трудности, поэтому расчет коэф-в
делают в матрчно-вект-й форме.
Расчет коэффициентов множественной линейной регрессии.
Предпол-м, что исход выборка предст-на как
Век-р искомых коэф-в и вектор откл-ий
Тогда вел-на Q м.б. запис-на в виде произв-ия 2-х век-ров как
А Ỹ б опр-ся как
=> е=У-Ỹ
, т.к. транспонирование озн-т, что строки стан-ся столбцами и наоборот.
Но т.к. Q –нек-ое число, то каждое из выраж-й здесь также из себя предс-т число.
При трансп-ии матрица сост-ая из 1 эл-та переходит сама в себя.
Воспол-ся этим св-вом и докажем, что 2 и 3 слогаемое в выр-ии совп-т. Для этого транспон-ем любое из них.
2).
Найдем производную от этого выр-ия по любой из компонент в-ра В.
Распишем в явном виде значение для 2 и 3 выраж-ий, т.кк производ от 1-го слог-го по люб bj=0.
Тогда производ-я по люб из значений bj м.б. предст-на как эл-ты произведения из соответ строки этой матрицы (век-ра-столбца), т.е.
Рассм-м теперь последнее из слогаемых, но сначала распишем матрицу
Размер-ть 1-й (m+1)n, 2-й n(m+1)
Размер-ть итоговой (m+1)(m+1)
Полученная матрица всегда симметр-на отн-но глав диагонали, т.к. под знаком суммир-я множители м поменять местами.
Б считать, что эл-ми матрицы Z яв-ся Zij, причем, чтобы не запис-ть нулевые строку и столбец, добавленные в выборку.
Z=(Zij) i=1, m+1
j=1, m+1
Б считать, что эл-ты Z имеют индексы:
,
где индекс 0 соотнес с этой добавленной строкой и столбцом.
Тогда все выраж-ие б равно
Тогда при вычил-ии производ-й от такого выраж-ия каждая производ-я по bj б встреч-ся дважды: 1-й раз во внеш суммир-ии, 2-й во внутр.
Поэтому производ-й от 3-го слогаемого б рав-на:
И чтобы найти значи-я для век-ра В, мы д эту производ-ю приравнять к 0.
Общее выражение для нахождения коэф-в в ур-ях множест регрессии.
Значения для эл-тов век-ра B при m=1 и m=2получить на практике в общем матричном виде, что позволит понять принцип нахож-ия коэф-в ур-ий с люб кол-вом объясняющ перем-ых.
Но при решении задач с 2 объясняющ перем-ми (m=2) мы б польз-ся преобразован-ми знач-ми, получ-ми из общего вида m=2 в форме:
Для b2 получаем симметрично
bo – усл-ие прохождения ч/з среднюю точку выборки.
1-3 (дисп-ии откл-ий) не м.б. отрицат. 4-6 (ковариации) м.б. люб
Дисперсии и стандартные ошибки коэффициентов.
Их знание позвол-т анализ-ть точность найденных оценок коэф-в, строить их доверит интер-лы и проверять соответ-ие гипотезы.
Наиболее удобным для такой проверки знач-я дисп-ий и станд откл-ий, запис-й в матр-но-векторной форме.
Если мы запишем вектор теорет откл-ий
,введем вспомогат век-р I, состоящий из ед-ц ,
то мы сможем, используя единич матрицу, записать матрицу ковариаций случ откл-ий в форме:
D(εi)=D(εj)=σ²
Исходя из этого К(ε)=σ²Е, где Е- единич матрица.
Усл-ия Гауса-Маркова б выглядеть:
1). Мε)=0
2). D(ε)=σ²I (век-р единич)
3). К(ε)=σ²Е
Рассм-м, когда знач-я для коэф-в с учетом их соотн-ия с теоретич коэф-ми из ур-ия регр-ии.
Откл-ие теорет век-ра от расчет
Построим ковариационную матрицу для теорет коэф-в, использую получ-е соот-ие.
Т.к. матрица симметр-на относ-но глав диагонали, то обрат к ней матрица тоже симмет-на=>
Кроме ε все значения яв-ся const из выборки. Поэтому множ-ли можно вынести из мат ожидания, сохранив порядок умножения.
=> для люб знач-ия коэф-та bj мы можем представить единич дисп-ию его вел-ны ч/з выбороч знач-я, зная что оценкой для σ² яв-ся
σ²→So²=∑ei²/n-m-1, а из матрицы обратной мы возьмем соответ-й эл-т с глав диаг-ли матрицы Z.
А тогда мы получ-ем возм-ть рассч-ть t-стат-ку.
При проверке гипотез отн-но коэф-в ур-ие множ регр-ии также как и для ур-ия парной регр-ии. Отличие состоит в том, что при построении доверит инт-ла отн-но завис-й перем-й у.
. Для мат ожидания →
В
остальном, выраж-е для доверит
интер-в полностью соот-т
Анализ качества эмпирических уравнений и множества линейных регрессий.
Построение эмпир ур-ия яв-ся начальным этапом эмпир анализа. 1-ое построенное Ур-ие по имеющейся выборке оч редко яв-ся удовл-м по всем хар-м. Поэтому след важнейшая задача – проверка кач-ва ур-ия.
В экономет-ке принята устоявшаяся схема такого анализа. Она провод-ся по след напр-ям:
1). Проверка стат знач-ти коэф-в рассматр-го ур-ия регр-ии.
2). Проверка общего кач-ва ур-ия.
3). Проверка св-в данных, выполнимость кот-ых предназначалась при оценивании ур-ий, т.е. это проверка усл-ий Гауса-Маркова.
1). Проверка стат знач-ти коэф-в рассматр-го ур-ия регр-ии.
Как и в парных ур-иях, эта проверка дел-ся на основе t-статистик.
Т.е. рассч-ся tbj=|bj/Sbj|.
И если |tbj|>tкр, то коэф-т сч-ся значимым.
Если |tbj|<tкр, коэф-т не значим, т.е. он стат-ки близок к нулю. Это значит, что фактор xj прак-ки не связан линейно с завис переменной.
Его присут-ие в ур-ии неоправданно со стат т.зр., и он м лишь искажать реальн картину взаимосвязей. Поэтому рекоменд-ся такие ф=ры из ур-ия исключать.
Зачастую, строгую проверку м не делать. Достаточно и грубой оценки.
|tbj|≤1 – не значим
1<|tbj|≤2 – слабо значим
2<|tbj|≤3 значим
3<|tbj| - сильно значим.
Коэф-т искл-т, если |tbj|≤1
2). Проверка общего кач-ва ур-ия.
Для этого, как и в парной регр-ии, исп-ся F стат-ки.
Fкр=Fα1,υ1,υ
υ1=m υ2=n-m-1
И также, как в t стат-ке, если Fрасч>Fкр, то ур-ие сч-ся значимым.
Как б показано, 0<R²<1.
Но для того, чтобы соотнести ур-нь детермин-ии с каждым из объясн-их ф-ров, его коррет-т на число степеней свободы в исходной выборке. Вводят скоррек-й коэф-т
Т.е. в знаменателе записана несмещенная оценка общей дисп-ии независ-й перемен-й. А в числ-ле мы расс-м вел-ну, соответ-ую So²=∑ei²/(n-m-1).
В этом случае соот-ие м.б. предст-но ч/з исходное значение коэф-та детерминации:
Обычно привод-ся данные как для одного, так и для др коэф-та детерм-ии. Но абсолютизировать эти пок-ли нельзя.
Сущ-т
мно-во вар-тов, когда при высоком знач-ии
R² (R²→1), не б вып-ся усл-ий Гаусса-Маркова,
и ур-ие окаж-ся низкого кач-ва.
Анализ статистической значимости коэффициента детерминации.
Он провер-ся по Fтат-ке. Проверка соот-т гипотезе Ho:β1=β2-…βm=0.
Если Fрасч≤Fкр, то десается вывод, что совокуп влияние всех объясн-х переем-х, исп-х в модели, не зависимую пере-ю стат-ки не значит. У ур-ия низкое кач-во.
Если же гипотеза откл-ся (Fр>Fкр), то объясненная дисп-ия разброса завис-ой переем-й соизмерима с дисп-ей, вызванной случ откл-ми. Очевидно, что R и R²=0 или ≠0 одновр-но. А это значит, что по МНК наилуч-я линяя регр-ии ỹ=yср, а => у лин не зависит от объясн-их переем-х.
В случаях парной регр-ии, проверка нулевой гипотезы для R² равносильна проверке на стат значимость t стат-к из соотношения
т.к.
m=1, a r²=(rxy)²
Проверка равенства 2-х коэффициентов детерминации.
Основана на исп-ии стат-ки Фишера для проверки необх-ти включения или искл-ия в ур-ии множест регр-ии доп объян-их переем-х.
Предположим, что изнач-но построено ур-ие, содерж-ее m объясн-их переем-х:
и для него вычислим коэф-т детерм-ии R²I. Исключим из исх-ой выборки все объясняющ переем-ые, имеющие номер > чем к. Тогда, по ост выборке мы м построить др ур-ие регр-ии:
ŷ и для него опр-м R²II. Всегда R²II≤R²I, т.к. включ в модель кажд доп пере-й объясн-т еще какую-то долю ее разброса отн-но ур-ия регр-ии. Тогда нас интер-т на сколько кач-во одного ур-ия отлич-ся от кач-ва др ур-ия.
Поэтому гипотеза Но состоит в том, что коэф-ты детер-ии совпадают (кач-во одинаковое), а с ней конкур-т Н1.
R²I= R²II – кач различно.
В соответ-ии с ними рассч-ся R²стат:
, где m-k – кол-во исключ объясн-х переем-х.