Автор работы: Пользователь скрыл имя, 02 Декабря 2014 в 17:18, курс лекций
Концепция национальной политики России в области качества продукции и услуг утверждена Указом Президента Российской Федерации от 17 декабря 1997 года.
Проблемы качества и национальные интересы России находятся в следующей зависимости:
экономические – конкурентоспособность;
социальные – удовлетворение потребности, безопасность;
международные – престиж России;
информационные – укрепление позиций на внутреннем и внешнем информационном рынке;
Для получения качественной продукции необходимо знать реальную точность имеющегося оборудования, определять соответствие точности выбранного технологического процесса заданной точности изделия, оценивать стабильность технологического процесса. Решение задач указанного типа производится в основном путем математической обработки эмпирических данных, полученных многократными измерениями либо действительных размеров изделий, либо погрешностей обработки или погрешностей измерения.
Существуют две категории погрешностей: систематические и cлучайные. В результате непосредственных наблюдений, измерений или регистрации фактов получается множество данных, которые образуют статистическую совокупность и нуждаются в обработке, включающей систематизацию и классификацию, расчет параметров, характеризующих эту совокупность, составление таблиц, графиков, иллюстрирующих процесс.
Форма распределения вероятности
Для характеристики формы распределения обычно используют ту математическую модель, которая наилучшим образом приближает к виду кривой распределения вероятностей, полученной при анализе экспериментально полученных данных.
Закон нормального распределения
Большинство случайных явлений, происходящих в жизни, в частности, в производстве и научных исследованиях, характеризуются наличием большого числа случайных факторов, описывается законом нормального распределения, который является основным во многих практических исследованиях. Однако нормальное распределение не является единственно возможным. В зависимости от физической природы случайных величин, некоторые из них на практике могут иметь распределение другого вида, например, логарифмическое, экспоненциальное, Вейбулла, Симпсона, Релея, равной вероятности и др.
Уравнение, описывающие плотность вероятности нормального распределения имеет вид:
|
|
Нормальное распределение характеризуется двумя параметрами μ и σ и на графике представляет собой симметричную кривую Гаусса (рисунок 6.3), имеющую максимум в точке соответствующей значению Х = μ (соответствует среднему арифметическому Хср и называется центром группирования), а при Х → -∞ и Х → ∞ асимптотически приближающуюся к оси абсцисс. Точка перегиба кривой находится на расстоянии σ от центра расположения μ. С уменьшением σ кривая растягивается вдоль оси ординат и сжимается вдоль оси абсцисс. Между абсциссами μ - σ и μ + σ расположено 68,3 % всей площади кривой нормального распределения. Это означает, что при нормальном распределении 68,3 % всех измеренных единиц отклоняются от среднего значения не более чем на σ, то есть все они находятся в пределах + σ. Площадь, заключенная между ординатами, проведенными на расстоянии 2σ с обеих сторон от центра составляет 95,4 % и соответственно столько же единиц совокупности находится в пределах μ+2σ. И наконец, 99,73 % всех единиц находится в пределах μ+3σ. Это так называемое правило «трех сигм», характерное для нормального распределения. Согласно этому правилу за пределами отклонения на 3σ находится не более 0,27 % всех значений величин, то есть 27 реализаций на 10 тысяч. В технических приложениях принято при оценке результатов измерений работать с коэффициентами z при σ, соответствующим 90 %, 95 %, 99 %, 99,9 % вероятности попадания результата в область допуска.
Z90 = 1,65; Z95 = 1,96; Z99 = 2,576; Z99,9 = 3,291.
Биномиальное распределение
Распределение количества «успехов» в последовательности из независимых случайных экспериментов, таких, что вероятность «успеха» в каждом из них постоянна и равна .
Пусть — конечная последовательность независимых случайных величин сраспределением Бернулли, то есть
Построим случайную величину :
.
Тогда , число единиц (успехов) в последовательности , имеет биномиальное распределение с степенями свободы и вероятностью «успеха» . Пишем: . Её функция вероятности задаётся формулой:
где — биномиальный коэффициент.
Третье широко используемое дискретное распределение — распределение Пуассона. Случайная величина имеет распределение Пуассона, если
,
,
где — параметр распределения Пуассона, и для всех прочих (при обозначено ).
Для распределения Пуассона:
,
.
Это распределение названо в честь французского математика Симеона-Дени Пуассона (1781—1840), впервые получившего его в 1837 году. Распределение Пуассона является предельным случаем биномиального распределения, когда вероятность осуществления события мала, но число испытаний велико, причём . Точнее, справедливо предельное соотношение:
, . (6.34)
Поэтому распределение Пуассона (в старой терминологии «закон распределения») часто называют также «законом редких событий».
Распределение Пуассона возникает в теории потоков событий. Доказано, что для простейшего потока с постоянной интенсивностью число событий (вызовов), происшедших за время , имеет распределение Пуассона с параметром . Следовательно, вероятность того, что за время не произойдет ни одного события, равна , то есть функция распределения длины промежутка между событиями является экспоненциальной.
Распределение Пуассона используется при анализе результатов выборочных потребителей товара, расчёте оперативных характеристик планов статистического приёмочного контроля в случае малых значений приёмочного уровня дефектности, для описания числа разладок статистически управляемого технологического процесса в единицу времени, числа «требований на обслуживание», поступающих в единицу времени в систему массового обслуживания, статистических закономерностей несчастных случаев и редких заболеваний, и так далее.
Гипергеометрическое распределение имеет место при выборочном контроле конечной совокупности объектов объёма по альтернативному признаку. Каждый контролируемый объект классифицируется либо как обладающий признаком , либо как не обладающий этим признаком. Гипергеометрическое распределение имеет случайная величина , равная числу объектов, обладающих признаком в случайной выборке объёма , где . Например, число дефектных единиц продукции в случайной выборке объёма из партии объёма имеет гипергеометрическое распределение, если . Другой пример — лотерея. Пусть признак билета — это признак «быть выигрышным». Пусть всего билетов , а некоторое лицо приобрело из них. Тогда число выигрышных билетов у этого лица имеет гипергеометрическое распределение.
Для гипергеометрического распределения вероятность принятия случайной величиной значения имеет вид
,
где — число объектов, обладающих признаком , в рассматриваемой совокупности объёма . При этом принимает значения от до , при прочих вероятность в формуле равна нулю. Таким образом, гипергеометрическое распределение определяется тремя параметрами — объёмом генеральной совокупности , числом объектов в ней, обладающих рассматриваемым признаком , и объёмом выборки .
Простой случайной выборкой объёма из совокупности объёма называется выборка, полученная в результате случайного отбора, при котором любой из наборов из объектов имеет одну и ту же вероятность быть отобранным. Методы случайного отбора выборок респондентов (опрашиваемых) или единиц штучной продукции рассматриваются в инструктивно-методических и нормативно-технических документах. Один из методов отбора таков: объекты отбирают один из другим, причём на каждом шаге каждый из оставшихся в совокупности объектов имеет одинаковые шансы быть отобранным. В литературе для рассматриваемого типа выборок используются также термины «случайная выборка», «случайная выборка без возвращения».
Поскольку объёмы генеральной совокупности (партии) и выборки обычно известны, то подлежащим оцениванию параметром гипергеометрического распределения является . В статистических методах управления качеством продукции — обычно число дефектных единиц продукции в партии. Представляет интерес также характеристика распределения — уровень дефектности.
Для гипергеометрического распределения:
, . (6.36)
Последний множитель в выражении для дисперсии близок к 1, если . Если при этом сделать замену , то выражения для математического ожидания и дисперсии гипергеометрического распределения перейдут в выражения для математического ожидания и дисперсии биномиального распределения. Это не случайно. Можно показать, что
,
,
при , где . Точнее, справедливо предельное соотношение
, ,
и этим предельным соотношением можно пользоваться при .
Описание иных параметрических семейств дискретных распределений и возможности их практического использования рассматриваются в обширной (более миллиона названий статей и книг на десятках языков) литературе по вероятностно-статистическим методам.
Тема 7. Анализ состояния процессов
7.2. Сбор данных о процессах, контрольные листки
Все статистические методы базируются на достоверной информации. Применение каждого из методов должно начинаться со сбора необходимых данных.
Контрольные листки (листы) – это инструмент для сбора данных и их автоматического упорядочения для облегчения дальнейшего использования собранной информации.
Руководством к нашим действиям служат данные, из которых мы узнаем о фактах и принимаем соответствующие решения. Прежде, чем начать собирать данные, надо решить, что Вы будете с ними делать.
Цели сбора данных в процессе контроля состоят в следующем:
Когда цель сбора данных установлена, она становится основной для определения типа данных, которые нужно собрать. Важно в процессе сбора тщательно упорядочить данные, чтобы облегчить их последующую обработку.
Поэтому, во-первых, надо четко зарегистрировать источники данных (без такой регистрации данные окажутся мертвыми). Весьма часто, несмотря на то, что был затрачено много времени на сбор данных о показателях качества, из них можно извлечь мало полезной информации, поскольку не зафиксированы день недели, когда собирались данные, станок, на котором производилась обработка, рабочий, выполнивший операцию, партия используемых материалов и так далее.
Во-вторых, данные надо регистрировать таким образом, чтобы их было легко использовать. Поскольку данные часто применяются для вычисления статистических характеристик (средние значения и размах), то лучше их записывать так, чтобы облегчить эти вычисления. Если данные требуется собирать постоянно, то надо заранее разработать стандартные формы регистрации данных.
Контрольный листок – бумажный бланк, на котором заранее напечатаны контролируемые параметры, с тем, чтобы можно было легко и точно записать данные измерений. Его главное назначение двояко:
В любом контрольном листке обязательно должна быть адресная часть, в которой указывается его название, измеряемый параметр, название и номер детали, цех, участок, станок, смена, оператор, обрабатываемый материал, режимы обработки и другие данные, представляющие интерес для анализа путей повышения качества изделия или производительности труда. Ставится дата заполнения, листок подписывается лицом, его непосредственно заполнявшим, а в случаях, если на нем приводятся результаты расчетов -лицом, выполнявшим эти расчеты.
Сбор и регистрация данных только на первый взгляд кажется легким делом, на самом же деле это довольно сложно. Обычно, чем больше людей обрабатывают данные, тем больше вероятность появления ошибок в процессе вычисления. Поэтому контрольный листок, на который можно заносить данные с помощью пометок или простых символов, который позволяет автоматически упорядочить данные без их последующего переписывания от руки, - хорошее средство регистрации данных. Рассмотрим некоторые наиболее часто встречающиеся на практике типы контрольных листков.
7.2.1. Контрольный лист для
Типовой вид контрольного листка для регистрации распределения измеряемого параметра в ходе производственного процесса показан на рис. 7.1.
Предположим, что мы хотим выявить изменения в размерах некоторой детали, подвергающейся механической обработке. Размер, указанный на чертеже – . Для получения распределения значений этого параметра в ходе процесса обычно используются гистограммы. На основе гистограммы выявляется среднее значение, исследуется также форма кривой распределения. Чтобы построить гистограмму, надо затратить немало труда на сбор большого числа данных и на представление частотного распределения в графической форме. Проще классифицировать данные в момент сбора. Для этой цели заранее готовится специальный бланк. Каждый раз, когда производится замер, в соответствующей клеточке ставится крест, так что к концу измерений гистограмма готова. Если нужно произвести расслоение с использованием одного контрольного листка, то можно брать карандаш разного цвета, чтобы разница была наиболее заметна.