Автор работы: Пользователь скрыл имя, 11 Января 2014 в 11:16, дипломная работа
Цель дипломного проекта – рассмотрение и описание функций одной и многих переменных, а также в рассмотрении методов, используемых при этом.
Данный дипломный проект рассчитан на абитуриентов высших учебных заведений. На вопрос - можно ли ввести рассмотрение этой темы в старших классах школы – ответ будет дан в последней главе дипломного проекта, после рассмотрения задач и возможных методов их решения. В дипломном проекте с большей логической стройностью и без повторений приведено изложение темы – функции одной и многих переменных, сообщены сведения из математического анализа, необходимые при изучении физики и ряда инженерных дисциплин.
1. Введение………………………………………………2
2. Историческая справка………………………………..3
3. Экстремумы функций одной переменной.
3.1. Необходимое условие……………………………5
3.2.1. Достаточное условие. Первый признак………7
3.2.2. Достаточное условие. Второй признак……….8
3.3. Использование высших производных………….10
4. Экстремумы функций трех переменных.
4.1. Необходимое условие…………………………...11
4.2. Достаточное условие…………………………….12
5. Экстремумы функций многих переменных.
5.1. Необходимое условие……………………………17
5.2. Достаточное условие…………………………….19
5.3. Метод вычисления критериев Сильвестера……22
5.4. Замечание об экстремумах на множествах…….31
6. Условный экстремум.
6.1. Постановка вопроса……………………………..33
6.2. Понятие условного экстремума…………………34
6.3. Метод множителей Лагранжа для нахождения точек условного экстремума…………………………………..36
6.4. Стационарные точки функции Лагранжа………40
6.5. Достаточное условие…………………………….46
7. Заключение……………………………………………51
8. Библиография..………………………………………..53
Содержание.
1. Введение………………………………………………2
2. Историческая справка…………………………
3. Экстремумы функций одной переменной.
3.1. Необходимое условие……………………………5
3.2.1. Достаточное условие. Первый признак………7
3.2.2. Достаточное условие. Второй признак……….8
3.3. Использование высших производных………….10
4. Экстремумы функций трех переменных.
4.1. Необходимое условие…………………………...11
4.2. Достаточное условие…………………………….12
5. Экстремумы функций многих переменных.
5.1. Необходимое условие……………………………17
5.2. Достаточное условие…………………………….19
5.3. Метод вычисления критериев Сильвестера……22
5.4. Замечание об экстремумах на множествах…….31
6. Условный экстремум.
6.1. Постановка вопроса……………………………..33
6.2. Понятие условного экстремума…………………34
6.3. Метод множителей
Лагранжа для нахождения точек
условного экстремума…………………………
6.4. Стационарные точки функции Лагранжа………40
6.5. Достаточное условие…………………………….46
7. Заключение……………………………………………51
8. Библиография..……………………………………….
Вмире не происходит ничего, в чем бы не был виден
Смысл какого-нибудь максимума или минимума.
В математике изучение задач на нахождение максимума и минимума началось очень давно. Но только лишь в эпоху формирования математического анализа были созданы первые методы решения и исследования задач на экстремум.
Потребности практической жизни, особенно в области экономики и техники, в последнее время выдвинули такие новые задачи, которые старыми методами решить не удавалось. Надо было идти дальше.
Потребности техники,
в частности космической, выдвинули
серию задач, которые также не
поддавались средствам вариацио
Цель дипломного проекта – рассмотрение и описание функций одной и многих переменных, а также в рассмотрении методов, используемых при этом.
Данный дипломный проект рассчитан на абитуриентов высших учебных заведений. На вопрос - можно ли ввести рассмотрение этой темы в старших классах школы – ответ будет дан в последней главе дипломного проекта, после рассмотрения задач и возможных методов их решения.
В дипломном проекте с большей логической стройностью и без повторений приведено изложение темы – функции одной и многих переменных, сообщены сведения из математического анализа, необходимые при изучении физики и ряда инженерных дисциплин.
2.Историческая справка.
В жизни постоянно приходится
сталкиваться с необходимостью
принять наилучшее возможное
(иногда говорят - оптимальное)
решение. Огромное число
В математике исследование задач на максимум и минимум началось очень давно – двадцать пять веков назад, Долгое время к задачам на отыскание экстремумов не было сколько – нибудь единых подходов. Но примерно триста лет назад – в эпоху формирования математического анализа – были созданы первые общие методы решения и исследования задач на экстремум.
Накопление
методов дифференциального
Рассуждения при нахождении экстремума функции f(x) следующие. Пусть для некоторого x функция достигает максимума. Тогда f(x h)<f(x);f(x) Ph Qh2 …<f(x) . Вычитаем из обеих частей и делим на h, откуда P Qh …<0.Так как h можно выбрать любой малости, член P будет по модулю больше суммы всех остальных членов. Неравенство поэтому возможно лишь при условии P=0, что и дает условие Ферма. В случае минимума рассуждения аналогичные. Ферма знал также, что знак Q определяет характер экстремума.
К сожалению, Ферма не стремился публиковать свои работы, кроме того, пользовался труднодоступными для усвоения алгебраическими средствами Виета с его громоздкой символикой. Видимо, поэтому он не сделал последнего, уже небольшого, шага на пути к созданию дифференциального исчисления.
Накопление фактов дифференциального исчисления происходило быстро. В «Дифференциальном исчислении» (1755) Эйлера это исчисление появляется уже в весьма полном виде.
Правила определения экстремумов функции одной переменной y=f(x) были даны Маклореном. Эйлер разработал этот вопрос для функции двух переменных. Лагранж показал (1789), как отличать вид условного экстремума для функции многих переменных.
В XVIII веке возникло исчисление вариаций. В трудах Эйлера и Лагранжа оно приобрело вид логически стройной математической теории. Главной задачей, решаемой средствами этого исчисления, являются отыскание экстремумов функционалов.
3.Экстремумы функций одной переменной.
3.1.Необходимое условие.
Пусть функция f(x), определенная и непрерывная в промежутке [a,b], не является в нем монотонной. Найдутся такие части [ , ] промежутка [a,b], в которых наибольшее и наименьшее значение достигается функцией во внутренней точке, т.е. между и .
Говорят, что функция f(x) имеет в точке максимум (или минимум), если эту точку можно окружить такой окрестностью (x0- ,x0+ ), содержащейся в промежутке, где задана функция, что для всех её точек выполняется неравенство.
f(x) < f(x0)(или f(x)>f(x0))
Иными словами, точка x0 доставляет функции f(x) максимум (минимум), если значение f(x0) оказывается наибольшим (наименьшим) из значений, принимаемых функцией в некоторой (хотя бы малой) окрестности этой точки. Отметим, что самое определение максимума (минимума) предполагает, что функция задана по обе стороны от точки x0.
Если существует такая окрестность, в пределах которой (при x=x0) выполняется строгое неравенство
f(x)<f(x0)(или f(x)>f(x0)
то говорят, что функция имеет в точке x0 собственный максимум (минимум), в противном случае – несобственный.
Если функция имеет максимумы в точках x0 и x1 , то, применяя к промежутку [x0,x1] вторую теорему Вейерштрасса, видим, что наименьшего своего значения в этом промежутке функция достигает в некоторой точке x2 между x0 и x1 и имеет там минимум. Аналогично, между двумя минимумами непременно найдется максимум. В том простейшем (и на практике – важнейшим) случае, когда функция имеет вообще лишь конечное число максимумов и минимумов, они просто чередуются.
Заметим, что для обозначения максимума или минимума существует и объединяющий их термин – экстремум.
Понятия максимум (max f(x)) и минимум (min f(x)) являются локальными свойствами функции и имеют место в определенной точке х0. Понятия наибольшего (sup f(x)) и наименьшего (inf f(x)) значений относятся к конечному отрезку [a,b] и являются глобальными свойствами функции на отрезке.
Из рисунка 1 видно, что в точках х1 и х3 локальные максимумы, а в точках х2 и х4 – локальные минимумы. Однако, наименьшего значения функция достигает в точке х=а, а наибольшего – в точке х=b.
Поставим задачу о разыскании всех значений аргумента, доставляющих функции экстремум. При решении ее основную роль будет играть производная.
Предположим сначала, что для фунции f(x) в промежутке(a,b) существует конечная производная. Если в точке х0 функция имеет экстремум, то, применяя к промежутку (х0- ,х0+ ), о которой была речь выше, теорему Ферма, заключаем, что f (x)=0 этом состоит необходимое условие экстремума. Экстремум следует искать только в тех точках, где производная равна нулю.
С геометрической точки зрения это означает, что касательная к графику функции в его вершине или впадине параллельна оси ОХ.
Не следует, думать, однако, что каждая точка, в которой производная равна нулю, доставляет функции экстремум : указанное только что необходимое условие неявляется достаточным.
3.2.1.Достаточное услоие.Первый признак.
Дополним, что точки, где производная равна нулю, называются стационарными ; а точки, где производная не существует называются критическими.
Итак, если точка х0 есть стационарная точка для функции f(x) или если в этой точке не существует для неё двусторонней конечной производной, то точка х0 представляется, так сказать лишь “подозрительной” по экстремуму и подлежит дальнейшему испытанию.
Это испытание состоит а проверке достаточных условий для существования экстремума, которые мы сейчас утановим.
Предположим, что в некоторой окрестности (х- ,х+ ) точки х0 (по крайней мере, для х=х0) существует конечная производная и как слева от х0 , так и справа от х0 (в отдельности) сохраняет определенный знак. Тогда возможны следующие три случая:
I f’(x)>0 при х<х0 и f’(x)<0 при х>х0, т. е. производная f’(x) при переходе через точку х0 меняет знак плюс на минус. В этом случае, в промежутке [х0- ,х0] функция f(x) возрастает, a в промежутке [х0,х0+ ] убывает, так что значение f(x) будет наибольшим в промежутке [х0- ,х0+ ] , т. е. в точке х0 функция имеет собственный максимум.
II f’(x)<0 при х<х0 и f’(x)>0 при х>х0 , т. е. производная f’(x) при переходе через точку х0 меняет знак минус на плюс. В этом случае аналогично убеждаемся, что в точке х0 функция имеет собственный минимум.
III f’(x)>0 как при х<х0 так и при х>х0 либо же f’(x) и слева и справа от х0 , т. е. при переходе через х0 , не меняет знака. Тогда функция либо всё время возрастает, либо всё время убывает; в любой юлизости от х0 с одной стороны найдутся точки х, в которых f(x)<f(x0), а с другой – точки х, в которых f(x)>f(x0) так что в точке х0 никакого экстремума нет.
Итак, мы получаем правило
для испытания “
Это правило полностью решает вопрос в том случае, когда в промежутке (а,b), как это обычно бывает, всего лишь конечное число стационарных точек или точек, где отсутствует конечная производная:
a<х1<х2<… <хk<хk+1<… <хn<b (3.1)
именно ,тогда прежде всего, в любом промежутке (а,х1), (х1,х2), … ,(хk,хk+1), … ,(хn,b) существует конечная производная f’(x) и, кроме того, в каждом таком промежутке f’(x) сохраняет постоянный знак.Действинельно, если бы f’(x) меняла знак, например, в промежутке (хk,хk+1) , то по теореме Дарбу, она обращалась бы в нуль в некоторой точке между хk и хk+1, что невозможно, поскольку все корни производной уже содержатся в ряду точек (3.1).
Последнее замечание бывает полезно в некоторах случаях на практике: знак производной f’(x) во всем промежутке (хk,хk+1) определяется , если вычислить значение (или даже только установить знак) её в одной какой-либо точке этого промежутка.
3.2.2.Достаточное условие. Второй признак.
Нередко более удобным на практике оказывается другой признак существования экстремума, основанный на выяснении знака второй производной в стационарной точке.
Справедлива следующая теорема.
Теорема 3.1:Если х0 есть стационарная точка функции f(x) и f’’(x)<0, то в точке х0 функция иммет максимум,а если f’’(x)>0 , то функция имеет в точке х0 минимум.
Доказательство: По определению второй производной
(f’(x)-f’(x0)
f’’(x0)=lim-------------
x-x0
По условию теоремы f’(x)=0. Поэтому
f’(x)
f’’=lim----------
Допустим , что f’’(x)<0. Тогда по теореме о пределах функции найдётся такой интервал (x0-,x0+), в котором переменная величина f’(x)/(x-x0) сохраняет знак своего предела, т. е. выполняется неравенство
f’(x)
----------<0 (x0- <x<x0+ )
x-x0
Отсюда следует,что f’(x)>0 , если х-х0<0, или х>х0, и f’(x)<0, если х-х0>0, или х>х0. На оснавании первого достаточного признака существования экстремума заключаем, что в точке х0 функция f(x) имеет максимум. Аналогично показывается, что условие f’’(x)>0 обеспечивает минимум функции f(x).