Экстремумы функций

Автор работы: Пользователь скрыл имя, 11 Января 2014 в 11:16, дипломная работа

Описание работы

Цель дипломного проекта – рассмотрение и описание функций одной и многих переменных, а также в рассмотрении методов, используемых при этом.
Данный дипломный проект рассчитан на абитуриентов высших учебных заведений. На вопрос - можно ли ввести рассмотрение этой темы в старших классах школы – ответ будет дан в последней главе дипломного проекта, после рассмотрения задач и возможных методов их решения. В дипломном проекте с большей логической стройностью и без повторений приведено изложение темы – функции одной и многих переменных, сообщены сведения из математического анализа, необходимые при изучении физики и ряда инженерных дисциплин.

Содержание работы

1. Введение………………………………………………2
2. Историческая справка………………………………..3
3. Экстремумы функций одной переменной.
3.1. Необходимое условие……………………………5
3.2.1. Достаточное условие. Первый признак………7
3.2.2. Достаточное условие. Второй признак……….8
3.3. Использование высших производных………….10
4. Экстремумы функций трех переменных.
4.1. Необходимое условие…………………………...11
4.2. Достаточное условие…………………………….12
5. Экстремумы функций многих переменных.
5.1. Необходимое условие……………………………17
5.2. Достаточное условие…………………………….19
5.3. Метод вычисления критериев Сильвестера……22
5.4. Замечание об экстремумах на множествах…….31
6. Условный экстремум.
6.1. Постановка вопроса……………………………..33
6.2. Понятие условного экстремума…………………34
6.3. Метод множителей Лагранжа для нахождения точек условного экстремума…………………………………..36
6.4. Стационарные точки функции Лагранжа………40
6.5. Достаточное условие…………………………….46
7. Заключение……………………………………………51
8. Библиография..………………………………………..53

Файлы: 1 файл

Экстремумы функций.doc

— 287.50 Кб (Скачать файл)

d2g(x(0) )=           -----------dxjdxk +       ----------- d2xj =0         (6.39)

                      xj   xk                             xj

i=1,2,…,n

 

   Умножив i–е  равенство (6.39) на постоянную  i, входящую в функцию Лагранжа F(x), прибавим получившееся выражение к правой части равенства (6.38) ; тогда получим

                                2F(x(0) )                         F(x(0) )                               

d2g(x(0) )=           -----------dxjdxk +       ----------- d2xj          (6.38)

                      xj   xk                             xj

 

где dxi, i=1,2,…,n удовлетворяет системе уравнений (6.35).Поскольку x(0) точка стационарная для функции Лагранжа, то второй член получившегося равенства обращается в нуль, и тем самым формула (6.37) доказана.

Будем говорить, что квадратичная форма d2F(x(0) ) является положительно (отрицательно) определенной квадратичной формой переменных dxi, i=1,2,…,n, при условии, что эти переменные удовлетворяют системе уравнений (6.35), если для любых dxi, i=1,2,…,n , удовлетворяющих этой системе уравнений и таких, что     (dxi)2>0  выполняется неравенство d2F(x(0) ) >0 (соответственно d2F(x(0) ) <0)

Пусть точка x(0) удовлетворяет уравнениям связи (6.3) и является стационарной для функции Лагранжа (6.11) и пусть второй дифференциал функции Лагранжа в этой точке является положительно (отрицательно) определенной квадратичной формой переменных dx1,…,dxn, при условии, что они удовлетворяют системе уравнений (6.35).Тогда из (6.36) и (6.37) следует, что x(0)  является стационарной точкой для функции g(x) и что второй дифференциал этой функции в точке x(0)  является положительно (отрицательно) определенной квадратичной формой переменных dxm+1,…,dxn, и, следовательно, функция имеет в точке x(0) строгий минимум (максимум) , а значит, функция f0(x) имеет в точке x(0) условный строгий минимум (максимум) относительно уравнений связи (6.3).

Сформулируем полученный результат в виде теоремы.

Теорема 6.3: Если x(0) удовлетворяет уравнениям связи (6.3) и является стационарной точкой для функции Лагранжа (6.11) и если второй дифференциал функции Лагранжа в этой точке является положительно (отрицательно) определенной квадратичной формой переменных dx1,…,dxn при условии, что они удовлетворяют системе уравнений (6.29), то x(0) является точкой строгого минимума (максимума) для функции f относительно уравнений связи (6.3).

Таким образом, чтобы  исследовать стационарную точку  функции Лагранжа (6.11) на условный экстремум, надо исследовать на определенность квадратичную форму (6.37), т.е. второй дифференциал функции Лагранжа в этой точке при выполнении условий связи (6.3) (когда дифференциалы dxi, i=1,2,…,n связаны соотношениями (6.29)).При этом следует иметь в виду, что если второй дифференциал функции Лагранжа в рассматриваемой точке окажнтся положительно (отрицательно) определенным и без выполнения условий связи, то он будет и таковым , конечно, и при их выплнении.

.

 

7.Заключение.

 

 

Математический анализ это совершенно естественная, простая  и элементарная наука, ничуть не более  заумная, сложная или “высшая”, чем, скажем, “элементарная” геометрия. Многие теоремы, традиционно входившие  в курс геометрии, куда сложнее, чем основополагающие теоремы классического анализа. Ныне противопоставление элементарной математики и анализа непродуктивно, и вовсе необязательно проявлять бездну остроумия только лишь из боязни использовать свойства производной.

Привнесение элементов  математического анализа в школьные программы неизбежно приведет к перестройке и других областей математического образования – изменится содержание конкурсных задач, кружковой работы, математических олимпиад и многого другого. Теперь уже невозможно не учитывввать, что школьник должен знать нечто из ранее недоступной ему высшей математики.

При этом следует  иметь в виду, что если освоены  лишь самые основы математического  анализа, можно уже делать попытки  подобраться ко многим современным  проблемам.

При рассмотрении данной темы дипломного проекта теоритические сведения подтвердились практическим доказательством и математическим обоснованием.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8. Библиография.

 

1.А.Ф.Бермант,  И.Г.Араманович Краткий курс математического  анализа.-М.: Наука, 1973.

2.И.Е.Жак Дифференциальное  исчисление.-М.:Государственное учебно-педагогическое  издательство министерства просвещения  РСФСР, 1960.

3.Г.И.Запорожец  Руководство к решению задач  по математическому анализу.-М.: Высшая  школа,1966.

4.В.А.Зорич Математический анализ.-М.: Наука, 1981.

5.А.П.Картышев, Б.Л.Рождественский Математический  анализ.-М.: Наука, 1984.

6.А.Н.Колмогоров, С.В.Фомин Элементы теории функций  и функционального анализа.-М.: Наука, 1981.

7.Л.Д.Кудрявцев  Курс математического анализа.-М.: Высшая школа, 1981.

8.А.Г.Моркович, А.С.Солодовников Математический  анализ.-М.: Высшая школа, 1990.

9.Н.С.Пискунов  Дифференциальное и интегральное  исчисление. т.1.-М.: Наука, 1978.

10.К.А.Рыбников  История математики.-М.:Издательство  Московского университета, 1994.

11.В.М.Тихомиров Рассказы  о максимумах и минимумах.-М.:Наука, 1986.

12.Г.М.Фихтенгольц  Основы математического анализа.  т.2.-М.: Наука, 1968.

13.Г.М.Фихтенгольц  Курс дифференциального и интегрального  исчисления. т.1.-М.: Наука, 1969.




Информация о работе Экстремумы функций