Автор работы: Пользователь скрыл имя, 13 Августа 2013 в 10:36, курс лекций
В данной работе изложен материал лекций по "Теоретическому и экспериментальному исследованию гидравлического удара в трубопроводах".
Лекция №1. Введение
Гидравлика как предмет
Методы исследования
Жидкость как объект изучения гидравлики
Основные свойства жидкости
Лекция №2. Гидростатика
1.Силы, действующие в жидкости
1.1 Массовые силы
1.2 Поверхностные силы
1.2.1 Силы поверхностного натяжения
1.3 Силы давления
1.3.1Свойства гидростатического давления
2. Основное уравнение гидростатики
3. Приборы для измерения давления
Лекция №1 Введение
1. Гидравлтка как предмет
История развития теорий и вопросов, связанных с движением жидкости, в частности воды, берет свое начало в глубокой древности. Еще древние вавилоняне, египтяне и индусы считали воду началом всех начал и затрачивали огромные усилия, чтобы получить воду. Построенные в до античный период водопроводы в Древних Афинах и Риме, каналы в долинах Нила, Тигра и Евфрата, плотины в Индии до сих пор выглядят грандиозно. Но эти сооружения, видимо, строились на основе опыта, передававшегося из поколения в поколение, и гидравлика являлась ремеслом без каких-либо научных обобщений.
Одним из первых научных трудов по гидравлике считается трактат Архимеда «О плавающих телах» (287—212 гг. до н. э.), в котором был впервые сформулирован гидравлический закон о равновесии тела, погруженного в жидкость.
Гидравлика (греч. hydor — вода и aulos — труба) — отрасль гидромеханики, которая изучает законы покоя и движения жидкостей и разрабатывает методы применения этих законов в практической деятельности. Первоначально название «гидравлика» обозначало движение воды по трубам. Наиболее существенные области приложения законов гидравлики — водоснабжение и канализация, осушение и орошение земель, а также проектирование гидравлических турбин, насосов, гидроприводов, водяного отопления, гидромеханизация и т. д. Почти во всех областях техники применяются гидравлические устройства, основанные на использовании законов гидравлики.
2. Методы исследования
При решении практических вопросов гидравлика оперирует всеми известными методами исследований: методом анализа бесконечно малых величин, методом средних величин, методом анализа размерностей, методом аналогий, экспериментальным методом.
Метод анализа бесконечно малых величин - наиболее удобный из всех методов для количественного описания процессов равновесия и движения жидкостей и газов. Этот метод наиболее эффективен в тех случаях, когда приходится рассматривать движение объектов на атомно-молекулярном уровне, т.е. в тех случаях, когда для вывода уравнений движения приходится рассматривать жидкость (или газ) с молекулярно-кинетической теории строения вещества. Основной недостаток метода - довольно высокий уровень абстракции, что требует от читателя обширных знаний в области теоретической физики и умение пользоваться различными методами математического анализа, включая векторный анализ.
Метод средних величин - является более доступным методом, поскольку его основные положения базируется на простых (близких к обыденным) представлениях о строении вещества. При этом выводы основных уравнений в большинстве случаев не требуют знаний молекулярно-кинетической теории, а результаты, полученные при исследованиях, этим методом не противоречат «здравому смыслу» и кажутся обоснованными. Недостаток этого метода исследований связан с необходимостью иметь некоторые априорные представления о предмете исследований.
Метод анализа размерностей может рассматриваться в качестве одного из дополнительных методов исследований и предполагает всестороннее знания изучаемых физических процессов.
Методом аналогий - используется в тех случаях, кода имеются в наличии детально изученные процессы, относящиеся к тому же типу взаимодействия вещества, что и изучаемый процесс.
Экспериментальный метод - является основным методом изучения, если другие методы по каким- либо причинам не могут быть применены. Этот метод также часто используется как критерий для подтверждения правильности результатов полученных другими методами.
В конечном счёте, метод изучения движения жидкости, а также уровень изучения (макро или микро) выбирается из условий практической постановки задач и соотношения характерных размеров.
3. Жидкость как объект изучения гидравлики
Передачу энергии в гидравлических системах обеспечивают рабочие жидкости, поэтому чтобы эффективно их применять, надо знать какими свойствами они обладают.
Жидкости, как и все вещества, имеют молекулярное строение. Они занимают промежуточное положение между газами и твердыми телами. Это определяется величинами межмолекулярных сил и характером движений составляющих их молекул. В газах расстояния между молекулами больше, а силы межмолекулярного взаимодействия меньше, чем в жидкостях и твердых телах, поэтому газы отличаются от жидкостей и твердых тел большей сжимаемостью. По сравнению с газами жидкости и твердые тела малосжимаемы.
Молекулы жидкости находятся
в непрерывном хаотическом
При этом надо заметить, что изменение температуры и давления приводят к изменениям свойств жидкостей. Установлено, что при повышении температуры и уменьшении давления свойства жидкостей приближаются к свойствам газов, а при понижении температуры и увеличении давления – к свойствам твердых тел.
Термин «жидкость» применяется для обозначения и собственно жидкости, которую рассматривают как несжимаемую или мало сжимаемую среду, и газа, который можно рассматривать как «сжимаемую жидкость».
Рассматривать и математически описывать жидкость как совокупность огромного количества отдельных частиц, находящихся в постоянном непрогнозируемом движении, на современном уровне науки не представляется возможным. По этой причине жидкость рассматривается как некая сплошная деформируемая среда, имеющая возможность непрерывно заполнять пространство, в котором она заключена. Другими словами, под жидкостями понимают все тела, для которых характерно свойство текучести, основанное на явлении диффузии. Текучестью можно назвать способность тела как угодно сильно менять свой объём под действием сколь угодно малых сил. Таким образом, в гидравлике жидкость понимают как абстрактную среду – континуум, который является основой гипотезы сплошности. Континуум считается непрерывной средой без пустот и промежутков, свойства которой одинаковы во всех направлениях. Это означает, что все характеристики жидкости являются непрерывными функциями и все частные производные по всем переменным также непрерывны.
По-другому такие тела (среды) называют капельными жидкостями. Капельные жидкости - это такие, которые в малых количествах стремятся принять шарообразную форму, а в больших образуют свободную поверхность.
Очень часто в математических описаниях гидравлических закономерностей используются понятия «частица жидкости» или «элементарный объём жидкости». К ним можно относиться как к бесконечно малому объёму, в котором находится достаточно много молекул жидкости. Например, если рассмотреть кубик воды со сторонами размером 0,001 см, то в объеме будет находиться 3,3∙1013 молекул. Частица жидкости полагается достаточно малой по сравнению с размерами области, занятой движущейся или покоящейся жидкостью.
Сплошная среда представляет собой модель, которая успешно используется при исследовании закономерностей покоя и движения жидкости. Правомерность применения такой модели жидкости подтверждена всей практикой гидравлики.
Изучение реальных жидкостей и газов связано со значительными трудностями, т.к. физические свойства реальных жидкостей зависят от их состава, от различных компонентов, которые могут образовывать с жидкостью различные смеси как гомогенные (растворы) так и гетерогенные (эмульсии, суспензии и др.) По этой причине для вывода основных уравнений движения жидкости приходится пользоваться некоторыми абстрактными моделями жидкостей и газов, которые наделяются свойствами неприсущими природным жидкостям и газам.
Идеальная жидкость - модель природной жидкости, характеризующаяся изотропностью всех физических свойств и, кроме того, характеризуется абсолютной несжимаемостью, абсолютной текучестью (отсутствие сил внутреннего трения), отсутствием процессов теплопроводности и теплопереноса.
Реальная жидкость - модель природной жидкости, характеризующаяся изотропностью всех физических свойств, но в отличие от идеальной модели, обладает внутренним трением при движении.
Идеальный газ - модель, характеризующаяся изотропностью всех физических свойств и абсолютной сжимаемостью.
Реальный газ - модель, при которой на сжимаемость газа при условиях близких к нормальным условиям существенно влияют силы взаимодействия между молекулами.
4. Основные свойства жидкости
Плотность жидкости , так же как любых других тел, представляет собой массу единицы объёма, и для бесконечно малого объёма жидкости dV массой dM может быть определена по формуле:
Для однородных жидкостей можно считать, что
где M – масса жидкости,
V – объём жидкости.
Единицы измерения:
[кг/м3], [кг/дм3], [кг/л], [г/см3].
Плотность жидкости зависит от температуры и давления. Все жидкости, кроме воды, характеризуются уменьшением плотности с ростом температуры. Плотность воды имеет максимум при t = 4 оC и уменьшается при любых других температурах. В этом проявляется одно из аномальных свойств воды. Температура, при которой плотность воды максимальная, с увеличением давления уменьшается. Так, при давлении 14 МПа вода имеет максимальную плотность при 0,6 оC.
Плотность пресной воды равна 1000 кг/м3, солёной морской воды - 1020 ÷ 1030, нефти и нефтепродуктов – 650 ÷ 900 кг/м3, ртути – 13596 кг/м3.
При изменении давления плотность жидкостей изменяется незначительно. В большинстве случаев плотность жидкости в расчётах можно принимать постоянной. Однако встречаются случаи, когда изменением плотности пренебрегать нельзя, т.к. это может привести к значительным ошибкам.
Удельным весом жидкости - называется вес единицы её объёма. Эта величина выражается формулой для бесконечно малого объёма жидкости dV с весом dG:
Для однородных жидкостей можно считать:
,
где G – вес жидкости.
Удельный вес жидкости и плотность связаны соотношением:
где g – ускорение свободного падения.
Единицы измерения: [Н/м3], [Н/дм3], [Н/л], [Н/см3], 1Н=1кг•м/с2.
Значение ускорения свободного падения g на земле изменяется от 9,831 м/с2 на полюсах до 9,781 м/с2 на экваторе.
Иногда удобно использовать такую характеристику жидкости, которая называется «относительный удельный вес». Это отношение удельного веса жидкости к удельному весу пресной воды
Единицы измерения: Относительный удельный вес - величина безразмерная.
Сжимаемость жидкости это свойство жидкостей изменять свой объём при изменении давления.
Сжимаемость характеризуется коэффициентом объёмного сжатия (сжимаемости) βP, представляющим собой относительное изменение объёма жидкости V при изменении давления P на единицу.
Знак минус в формуле указывает, что при увеличении давления объём жидкости уменьшается.
Единицы измерения: Па-1 (Паскаль. 1Па=1Н/м2).
Отсутствие знака минус в этом выражении означает, что увеличение давления приводит к увеличению плотности.
Величина, обратная коэффициенту сжимаемости, или, по-другому, коэффициенту объёмного сжатия , обозначается
и называется объёмным модулем упругости жидкости.
Тогда предыдущая формула примет вид
Это выражение называется законом Гука для жидкости.
Единицы измерения: [Па], [МПа], [кГс/ см2].
Модуль упругости Еж зависит от температуры и давления. Поэтому различают два модуля упругости: адиабатический и изотермический. Первый имеет место при быстротекущих процессах без теплообмена. Процессы, происходящие в большинстве гидросистем, происходят с теплообменом, поэтому чаще используется изотермический модуль упругости. Примерная форма зависимостей Eж от P и t0 представлена на графиках. Всё это говорит о том, что жидкости не вполне точно следуют закону Гука.
Приведём несколько примеров значений модулей упругости.
Минеральные масла, используемые в технологических машинах с гидравлическим приводом, при t0 = 20 оC имеют объёмные модули упругости 1,35·103 ÷ 1,75·103 МПа (меньшее значение относится к более легкому маслу), бензин и керосин – приблизительно 1,3·103 МПа, глицерин - 4,4·103 МПа, ртуть – в среднем 3,2·103 МПа.