Лекции по "Технологии"

Автор работы: Пользователь скрыл имя, 13 Августа 2013 в 10:36, курс лекций

Описание работы

В данной работе изложен материал лекций по "Теоретическому и экспериментальному исследованию гидравлического удара в трубопроводах".

Содержание работы

Лекция №1. Введение
Гидравлика как предмет
Методы исследования
Жидкость как объект изучения гидравлики
Основные свойства жидкости
Лекция №2. Гидростатика
1.Силы, действующие в жидкости
1.1 Массовые силы
1.2 Поверхностные силы
1.2.1 Силы поверхностного натяжения
1.3 Силы давления
1.3.1Свойства гидростатического давления
2. Основное уравнение гидростатики
3. Приборы для измерения давления

Файлы: 18 файлов

Лекции.doc

— 48.50 Кб (Просмотреть файл, Скачать файл)

Лекция №1 введение.doc

— 244.00 Кб (Просмотреть файл, Скачать файл)

Лекция №10 истечение жидкости из отверстий и насадков.doc

— 110.00 Кб (Просмотреть файл, Скачать файл)

Лекция №11 гидравлический удар.doc

— 270.00 Кб (Просмотреть файл, Скачать файл)

Лекция №12Гидравлические машины и насосы.doc

— 149.00 Кб (Просмотреть файл, Скачать файл)

Лекция №13 ОСНОВНОЕ УРАВНЕНИЕ ЦЕНТРОБЕЖНЫХ НАСОСОВ.doc

— 246.50 Кб (Просмотреть файл, Скачать файл)

Лекция №14 Теория подобия в гидравлике.doc

— 105.00 Кб (Просмотреть файл, Скачать файл)

Лекция №15.doc

— 236.50 Кб (Просмотреть файл, Скачать файл)

Лекция №16 Объемные гидроприводы.doc

— 184.00 Кб (Просмотреть файл, Скачать файл)

Лекция №2 гидростатика.doc

— 595.50 Кб (Просмотреть файл, Скачать файл)

Лекция №3 дифф уравнение равновесия покоящейся жидкоти.doc

— 220.00 Кб (Просмотреть файл, Скачать файл)

Лекция №4 давление жидкости на окружающие стенки.doc

— 295.00 Кб (Просмотреть файл, Скачать файл)

лекция №5 гидродинамика.doc

— 158.50 Кб (Просмотреть файл, Скачать файл)

лекция №6 уравнение бернули.doc

— 229.00 Кб (Просмотреть файл, Скачать файл)

Лекция №7 режимы течения жидкостей.doc

— 177.50 Кб (Просмотреть файл, Скачать файл)

Лекция №8 Гидравлические сопротивления в потоках.doc

— 276.50 Кб (Скачать файл)

Лекция  8.  Гидравлические сопротивления в потоках жидкости

Сопротивление потоку жидкости

Гидравлическая жидкость в гидросистемах  технологического оборудования, как уже обсуждалось ранее, играет роль рабочего тела. Она обеспечивает перенос энергии от источника гидравлической энергии к потребителю (в большинстве случаев, к гидродвигателю). Для такого переноса используются напорные потоки. В подобных потоках жидкость со всех сторон ограничена твёрдыми стенками трубопроводов, каналов гидроаппаратов и полостей гидромашин. В дальнейшем мы будем ориентироваться именно на такие случаи, хотя аналогичные процессы сопровождают и движение безнапорных потоков.

Естественно, что твёрдые  стенки препятствуют свободному движению жидкости. Поэтому при относительном  движении жидкости и твердых поверхностей неизбежно возникают (развиваются) гидравлические сопротивления. На преодоление возникающих сопротивлений затрачивается часть энергии потока. Эту потерянную энергию называют гидравлическими потерями удельной энергии или потерями напора. Гидравлические потери главным образом связаны с преодолением сил трения в потоке и о твёрдые стенки и зависят от ряда факторов, основными из которых являются:

    • геометрическая форма потока,
    • размеры потока,
    • шероховатость твёрдых стенок потока,
    • скорость течения жидкости,
    • режим движения жидкости (который связан со скоростью, но учитывает её не только количественно, но и качественно),
    • вязкость жидкости,
    • некоторые другие эксплуатационные свойства жидкости.

Но гидравлические потери практически не зависят от давления в жидкости.

Величина гидравлических потерь оценивается  энергией, потерянной каждой весовой единицей жидкости. Из уравнения Бернулли, составленного  для двух сечений потока, обозначенных индексами 1 и 2 потери энергии потока жидкости  можно представить как

.

Напомним, что в этом уравнении  - энергия единицы веса жидкости, движущейся в поле сил тяготения,

- потенциальная энергия  единицы  веса жидкости, зависящая от её  положения над уровнем нулевого  потенциала (линией отсчёта),

-  потенциальная энергия единицы веса жидкости, зависящая от степени её сжатия (от давления),

- давление в потоке жидкости,

-  плотность жидкости,

- кинетическая энергия единицы  веса потока жидкости,

- коэффициент кинетической энергии,

- средняя скорость потока жидкости,

- ускорение свободного падения.

Если учесть, что труба в обоих  сечениях 1 и 2 имеет одинаковые площади поперечных сечений, жидкость является несжимаемой и выполняется условие сплошности (неразрывности) потока, то, несмотря на гидравлические сопротивления и потери напора, кинетическая энергия в обоих сечениях будет одинаковой. Учтя это, а также то, что при больших давлениях в напорных потоках и небольшой (практически нулевой) разнице нивелирных высот Z1 и Z2, потери удельной энергии можно представить в виде

.

Опыты показывают, что  во многих (но не во всех) случаях потери энергии прямо пропорциональны  квадрату скорости течения жидкости, поэтому в гидравлике принято выражать потерянную энергию в долях от кинетической энергии, отнесённой  к единице веса жидкости

,

  где  - коэффициент сопротивления.

Таким образом, коэффициент  сопротивления можно определить как отношение потерянного напора к скоростному напору.

Гидравлические потери в потоке жидкости разделяют на 2  вида:

    • потери по длине,
    • местные потери.

Гидравлические потери по длине

Потери напора по длине, иначе их называют потерями напора на трение , в чистом виде, т.е. так, что нет никаких других потерь, возникают в гладких прямых трубах с постоянным сечением при равномерном течении. Такие потери обусловлены внутренним трением  в жидкости и поэтому происходят и в шероховатых трубах, и в гладких. Величина этих потерь выражается зависимостью

,

где - коэффициент сопротивления, обусловленный трением по длине.

При равномерном движении жидкости на участке трубопровода постоянного диаметра d длиной l этот коэффициент сопротивления прямо пропорционален длине  и обратно пропорционален диаметру трубы

,

где l– коэффициент гидравлического трения (иначе его называют коэффициент потерь на трение или коэффициент сопротивления трения).

Из этого выражения  нетрудно видеть, что значение l - коэффициент трения участка круглой трубы, длина которого равна её диаметру.

С учетом последнего выражения  для коэффициента сопротивления  потери напора по длине выражаются формулой Дарси

.

Эту формулу можно  применять не только для цилиндрических трубопроводов, но тогда надо выразить диаметр трубопровода d через гидравлический радиус потока

  или

где, напомним,  ω – площадь живого сечения потока,

         χ - смоченный периметр.

Гидравлический радиус можно вычислить для потока с  любой формой сечения, и тогда формула Дарси принимает вид

.

Эта формула справедлива  как для ламинарного, так и  для турбулентного режимов движения жидкости, однако коэффициент трения по длине λ не является величиной постоянной.

Для определения физического смысла коэффициента λ рассмотрим объём жидкости длиной l, который равномерно движется в трубе диаметром d со скоростью V. На этот объём действуют силы давления P1 и P2, причём P1 > P2, и силы трения рассматриваемого объёма о стенки трубы, которые определяются напряжением трения на стенке трубы τ0. Условием равномерного движения под действием сказанных сил будет следующее равенство:

.

Если учесть, что 

, то
,

и подставить эту величину в уравнение сил, действующих на рассматриваемый объём, получим:

.

Сократив последнее  выражение,  получим  .  Выразив из него λ, окончательно будем иметь

.

Из полученного выражения  следует, что коэффициент гидравлического трения есть величина, пропорциональная отношению напряжения трения на стенке трубы к гидродинамическому  давлению, посчитанному по средней скорости потока. Приведённые выше рассуждения и полученные в результате них формулы справедливы как для ламинарного, так и для турбулентного потоков. Однако коэффициент λ не является величиной постоянной и зависит от многих факторов. Для выяснения его величины, и связанных с ним потерь энергии необходимо подробно проанализировать режимы движения жидкости.

Ламинарное течение жидкости

 

 

 

Используя значение скорости u, определим величину расхода через кольцевую площадь dωc шириной dr, находящуюся на расстоянии r от центра трубы. Выше было отмечено, что скорость в любой точке этого кольца одинакова, и тогда

.

Проинтегрировав dQ по всей площади трубы (т.е. от r = 0 до r = r0), получим

Средняя скорость в таком  потоке будет

Заметим, что средняя  скорость потока с параболическим распределением скоростей вдвое меньше максимальной.

Из последнего выражения  легко получить закон сопротивления потоку, т.е. зависимость потерь энергии от размеров и параметров движения жидкости:

Заменив в этом выражении  динамический коэффициент вязкости кинематическим и выразив радиус трубы r0 через диаметр d, получим

Полученное выражение  носит название закона Пуазейля и применяется для расчета потерь энергии с ламинарным течением.

Эту же величину потерь на трение ранее мы выразили формулой Дарси. Если приравнять правые части формулы Дарси и закона Пуазейля, получится:

Заменим расход произведением и подставим в последнее равенство

.

Искусственно умножим  и разделим числитель и знаменатель  на V:

Очевидно, что в этом случае

.

Это выражение для  коэффициента гидравлического трения при ламинарном движении жидкости хорошо подтверждается экспериментом и используется на практике для определения потерь энергии в потоке при ламинарном течении. Иногда этот коэффициент обозначается .

Турбулентное течение жидкости

Турбулентное течение в гладких  трубах

Гладкие или точнее технически гладкие трубы это такие, шероховатость внутренних поверхностей которых настолько мала, что практически не влияет на потери энергии на трение. К таким трубам относят

    • цельнотянутые трубы из цветных металлов,
    • трубы из алюминиевых сплавов,
    • стальные высококачественные бесшовные трубы,
    • новые высококачественные чугунные трубы,
    • новые не оцинкованные трубы.

В основном трубы, используемые в гидросистемах технологического оборудования можно отнести к технически гладким.

Потери напора при  турбулентном течении жидкости, как  уже отмечалось ранее, могут быть определены по формуле Дарси

или в виде потерь давление на трение

.

Однако коэффициент  потерь на трение по длине  в этом случае будут значительно больше, чем при ламинарном движении.

Причём сам коэффициент будет существенно зависеть от числа Рейнольдса. Эту зависимость можно представить в виде графика.

Наиболее применимыми  формулами для определения  являются следующие эмпирические и полуэмпирические зависимости

,

применяемая для чисел  Рейнольдса в пределах 2300 несколько миллионов, или

,

используемая в интервале 2300 100000.

Турбулентное  течение в шероховатых трубах

Исследование течения жидкости в шероховатых трубах практически  полностью основываются на экспериментальных  исследованиях. На их результатах основаны зависимости и расчётные формулы, применяющиеся для определения потерь энергии в подобных условиях. Основная формула для определения потерь напора – формула Дарси. Отличие заключается только в коэффициенте потерь на трение. В отличие от турбулентных потоков в гладких трубах, где коэффициент на трение   полностью определяется числом Рейнольдса Re, для потоков в трубах имеющих шероховатые внутренние поверхности зависит ещё и от размеров этой шероховатости. Установлено, что решающее значение имеет не абсолютная высота неровностей (абсолютная шероховатость) k, а отношение высоты этих неровностей к радиусу трубы r0. Эта величина обозначается  и называется относительной шероховатостью. Одна и та же абсолютная шероховатость может практически не влиять на коэффициент трения в трубах большого диаметра, и существенно увеличивать сопротивление в трубах малого диаметра. Кроме того, на сопротивление потоку жидкости влияет характер шероховатости. По характеру шероховатость разделяют на естественную, при которой величина неровностей k по длине трубы различна, и регулярную, при которой размеры неровностей по всей трубе одинаковы. Регулярная шероховатость создаётся искусственно и характеризуется тем, что имеет одинаковую высоту и форму неровностей по всей длине трубы. Шероховатость такого вида называют равномерно распределённой зернистой шероховатостью. Коэффициент потерь на трение в этом случае описывается функцией

.

Экспериментальным изучением  влияния числа Рейнольдса и относительной шероховатости занимался Никурадзе И. И., который проводил опыты для диапазонов и .

Результаты этих исследований сведены  к графику в логарифмических  координатах.

На графике цифрами обозначены:

1 – зона ламинарного течения,  коэффициент  вычисляется по формуле

;

Лекция №9 гидравлический расчет трубопроводов.doc

— 291.50 Кб (Просмотреть файл, Скачать файл)

Информация о работе Лекции по "Технологии"