Автор работы: Пользователь скрыл имя, 13 Августа 2013 в 10:36, курс лекций
В данной работе изложен материал лекций по "Теоретическому и экспериментальному исследованию гидравлического удара в трубопроводах".
Лекция №1. Введение
Гидравлика как предмет
Методы исследования
Жидкость как объект изучения гидравлики
Основные свойства жидкости
Лекция №2. Гидростатика
1.Силы, действующие в жидкости
1.1 Массовые силы
1.2 Поверхностные силы
1.2.1 Силы поверхностного натяжения
1.3 Силы давления
1.3.1Свойства гидростатического давления
2. Основное уравнение гидростатики
3. Приборы для измерения давления
В процессе проектирования различных гидросистем, трубопроводов, гидротехнических сооружений, гидравлических и газовых систем химических и нефтехимических предприятий нередко возникает необходимость не только математического, но и натурного моделирования. В таком случае необходимо, чтобы работа гидросистемы действующей модели соответствовала функционированию реального объекта. Это означает, что различные характеристики потоков жидкости, которые имеют место в модели и в реальной системе, должны описываться одинаковыми закономерностями, хотя их численные значения могут существенно различаться. В натурной модели они меньше (как правило) или больше (встречается реже), чем в действительности. Для этого необходимо иметь критерии, которые позволяли ли бы «масштабировать» реальную систему. Эти критерии устанавливаются в теории подобия потоков жидкости.
Гидродинамическое подобие - это подобие потоков несжимаемой жидкости, включающее в себя подобие геометрическое, кинематическое и динамическое.
Из геометрии известно, что геометрическое подобие означает пропорциональность сходственных размеров и равенство соответствующих угло в. В гидравлике под геометрическим подобием понимают подобие тех поверхностей, которые ограничивают потоки жидкости, Таким образом в гидравлике геометрическое подобие означает подобие русел или трубопроводов, по которым течёт жидкость.
Кинематическое подобие это подобие линий тока и пропорциональность сходственных скоростей. Это значит, что для кинематического подобия потоков требуется соблюдение геометрического подобия.
Динамическое подобие заключается в пропорциональности сил, действующих на сходственные элементы кинематически и геометрически подобных потоков, и равенство углов, характеризующих направление действия этих сил.
В потоках жидкостей (в нашем случае в трубопроводах, в гидромашинах и т.д.) обычно действуют разные силы – силы давления, силы вязкого трения, силы тяжести, инерционные силы. Соблюдение пропорциональности всех сил, действующих в потоке, означает полное гидродинамическое подобие.
На практике полное гидродинамическое подобие достигается редко, поэтому обычно приходится ограничиваться частичным (неполным) гидродинамическим подобием, при котором имеется пропорциональность лишь основных сил.
Записывается подобие следующим образом. Например, пропорциональность сил давления Р и сил трения Т, действующих в потоках I и II, можно записать в виде
В подобных потоках силы, с которыми поток воздействует на препятствия - твердые стенки, лопасти гидромашин, обтекаемые потоком тела, и другие преграды, должны быть пропорциональны. Этими силами являются силы инерции движущейся жидкости, которые пропорциональны произведению динамического давления на преграду при площади воздействия S.
Рассмотрим, как поток жидкости наталкивается на безграничную стенку, установленную нормально к нему, и в результате, растекаясь по ней, меняет свое направление на 90°. На основании теоремы механики о количестве движения секундный импульс силы , с которой поток действует на стенку, равен:
где - плотность жидкости,
- секундный расход жидкости,
- средняя скорость жидкости,
- площадь воздействия струи на преграду.
Это и есть сила воздействия на преграду. Для подобных потоков I и II должно выполняться равенство
или
Последнее отношение, одинаковое для подобных потоков, называется числом Ньютона и обозначается Ne.
Вначале рассмотрим наиболее простой случай - напорное движение идеальной жидкости, т. е. такое движение, при котором отсутствуют силы вязкости. Для этого случая уравнение Бернулли для сечений 1-1 и 2-2 будет иметь вид:
Из условия неразрывности потока расходы в сечениях 1-1 и 2-2 с площадями соответственно и одинаковы, а это значит, что
откуда
Подставив последнее соотношение в уравнение Бернулли, после переноса членов получим:
После очевидных преобразований и сокращений придём к виду
Если два потока геометрически подобны, то правая часть уравнения имеет одно и то же значение, следовательно, левая часть тоже одинакова, т.е. разности давлений в сечениях 1-1 и 2-2 пропорциональны динамическим давлениям:
Таким образом, при напорном движении идеальной несжимаемой жидкости для обеспечения гидродинамического подобия достаточно одного геометрического подобия. Безразмерная величина, представляющая собой отношение разности давлений к динамическому давлению (или разности пьезометрических высот к скоростной высоте), называется коэффициентом давления или числом Эйлера и обозначается Eu.
В случае напорного движения в приведённых уравнениях под можно понимать полное давление (на жидкость действует также сила тяжести, но в напорных потоках ее действие проявляется через давление, т. е. оно сводится лишь к соответствующему изменению давления за счёт глубины потока), т.к. при высоких давлениях величина давления, зависящая от глубины потока, несоизмеримо мала, и величина гидростатического напора практически полностью определяется избыточным давлением. Следовательно, для Eu можно записать:
где - разность статических напоров.
Посмотрим, какому условию должны удовлетворять те же геометрически и кинематически подобные потоки для того, чтобы было обеспечено их гидродинамическое подобие при наличии сил вязкости, а, следовательно, и потерь энергии, т.е. при каком условии числа Eu будут одинаковыми для этих потоков.
Уравнение Бернулли для этого случая примет вид:
или по аналогии с предыдущими рассуждениями, учтя, что , можно написать
Как видно из последнего уравнения, числа Eu будут иметь одинаковые значения для рассматриваемых потоков, а сами потоки будут подобны друг другу гидродинамически при условии равенства коэффициентов сопротивления (равенство коэффициентов и для сходственных сечений двух потоков следует из их кинематического подобия). Таким образом, коэффициенты сопротивлений в подобных потоках должны быть одинаковыми, а это значит, что потери напора для сходственных участков пропорциональны скоростным напорам.
Рассмотрим очень важный в гидравлике случай движения жидкости - движение с трением в цилиндрической трубе, для которого коэффициент трения можно описать формулой
Для геометрически подобных потоков отношение одинаково, следовательно, условием гидродинамического подобия в данном случае является одинаковое значение для этих потоков коэффициента . Он выражается через напряжение трения на стенке и динамическое давление, как было установлено ранее, следующим образом:
Следовательно, для двух подобных потоков I и II можно записать
т. е. напряжения трения пропорциональны динамическим давлениям.
Учитывая закон трения Ньютона и тот факт, что в последних уравнениях , предыдущие отношения, равные k, можно выразить
где индекс у = 0 означает, что производная взята при у = 0, т. е. у стенки трубы. При этом заметим, что закон трения Ньютона применим лишь при ламинарном течении. Однако, как было показано выше, при турбулентном течении в трубах вблизи стенок образуется тонкий ламинарный слой, внутри которого справедлив закон трения Ньютона. Поэтому напряжение трения на стенке может определяться по этому закону также и при турбулентном течении.
После умножения и деления на диаметр трубы d и перегруппировки множителей получим:
Здесь буквой С обозначено выражение в квадратных скобках, представляющее собой безразмерный градиент скорости вблизи стенки.
Для кинематически подобных потоков величина C одинакова, поэтому после сокращения на С условие динамического подобия потоков перепишем в виде
или, переходя к обратным величинам
В этом заключается критерий подобия Рейнольдса, который можно сформулировать следующим образом: для гидродинамического подобия геометрически и кинематически подобных потоков с учетом сил вязкости требуется равенство чисел Рейнольдса, подсчитанных для любой пары сходственных сечений этих потоков.
В тех случаях, когда движение жидкости является безнапорным и происходит под действием разности нивелирных высот, условие подобия потоков описывается иначе, с помощью другого критерия подобия - числа Фруда. Этот критерий учитывает пропорциональность в отношениях сил инерции к силам тяжести. Однако для подавляющего большинства интересующих нас задач в области машиностроения этот критерий не имеет значения и рассматриваться не будет.
Итак, в подобных напорных
потоках имеем равенство
Движение жидкости в
проточной части лопастных
Геометрическое подобие, как известно из геометрии, представляет собой пропорциональность сходственных размеров и равенство соответствующих углов. В гидравлике под геометрическим подобием понимают подобие тех поверхностей, которые ограничивают потоки, т. е. подобие русл или каналов. При моделировании два насоса могут считаться подобными, если линейные размеры одного из них (модель) в одинаковое число раз меньше соответствующих размеров другого:
При геометрическом подобии все углы постоянны. Для полного геометрического подобия необходимо, чтобы относительная шероховатость D/D и относительные зазоры d/ D) были одинаковы для обоих насосов.
Кинематическое подобие означает пропорциональность местных скоростей в сходственных точках и равенство углов, характеризующих направление этих скоростей. Траектории движения должны быть геометрически подобны:
Динамическое подобие— это пропорциональность сил, действующих на сходственные объемы в кинематически подобных потоках, и равенство углов, характеризующих направление этих сил. Динамическое подобие сводится к равенству чисел, или критериев Эйлера, Рейнольдса, Фруда:
две l — характерный линейный размер; t — время.
Гидромеханическое подобие основывается на соблюдении геометрического, кинематического и динамического подобия.
Критерии будут определяющими т
В практике моделирования гидромашин большое значение имеет критерий Эйлера:
Пересчет характеристик насоса при изменении частоты вращения и диаметра рабочего колеса. Для пересчета характеристик воспользуемся формулами закона пропорциональности:
при наружном диаметре рабочего колеса D2 = const.
Пересчет осуществляется следующим образом: задают ряд значений расхода Q, по имеющейся характеристике находят соответствующие каждому значению Q напор Н и КПД. Подставляют найденные значения Q1, п1 и H в уравнение и получают соответствующие значения Q2, h2 и H2, т. е. координаты точек новой характеристики насоса при частоте вращения n2. Наносят точки на график и получают искомую характеристику насоса при n2.
Если дана зависимость Н от Q при n1 = const., то аналогичная кривая для n2 = const может быть получена пересчетом абсцисс точек (подач) первой кривой пропорционально отношениям частот вращения, а ординат (напоров) — пропорционально квадрату этого отношения. Таким путем можно получить целую серию характеристик одного и того же насоса для ряда разных частот вращения n2, n3, n4 и т. д.