Шпаргалка по "Биологии"

Автор работы: Пользователь скрыл имя, 16 Марта 2014 в 14:33, шпаргалка

Описание работы

Работа содержит ответы на вопросы для экзамена по "Биологии".

Файлы: 1 файл

Chastnaya_gistologia.docx

— 355.56 Кб (Скачать файл)

В переносе кровью СО2 большое значение имеет также химическая связь СО2 с конечными аминогруппами белков крови, важнейший из которых — глобин в составе гемоглобина. В результате реакции с глобином образуется так называемый карбаминогемогло-бин. Восстановленый гемоглобин обладает большим сродством к СО2, чем оксигемоглобин. Таким образом, диссоциация оксигемоглобина в тканевых капиллярах облегчает связывание СО2, а в легких образование  оксигемоглобина  способствует выведению углекислого газа.

 

Из общего количества СО,, которое может быть извлечено из крови, лишь 8-10% СО, находится в соединении с гемоглобином. Однако, роль этого соединения в транспорте СО2 кровью достаточно велика. Примерно 25- 30% СО2, поглощаемого кровью в капиллярах большого круга, вступает в соединение с гемоглобином, а в легких — выводится из крови.


Когда венозная кровь поступает в капилляры легких, напряжение СО2 в плазме снижается и находящийся внутри эритроцита в физически растворенном виде СО2 выходит в плазму. По мере этого, Н2СО3 превращается в СО2 и воду (рис.8.8.Б), причем карбоангидраза катализирует реакцию, идущую в этом направлении. Н2СО3 для такой реакции доставляется в результате соединения ионов НСО3 с ионами водорода,  высвобождающихся из связи с белковыми анионами.

В состоянии покоя с дыханием из организма человека удаляется 230 мл СО2 в минуту или около 15000 ммоль в сутки. Поскольку СО2 является "летучим" ангидридом угольной кислоты, при его удалении из крови исчезает примерно эквивалентное количество ионов водорода. Поэтому дыхание играет важную роль в поддержании кислотно-щелочного равновесия во внутренней среде организма. Если в результате обменных процессов в крови увеличивается содержание водородных ионов, то, благодаря гуморальным механизмам регуляции дыхания, это приводит к увеличению легочной вентиляции {гипервентиляции). При этом молекулы СО2, образующиеся в процессе реакции НСО3 + Н+ -> Н2СО3 -> Н2О + СО2, выводятся в большем количестве  и  рН   возвращается  к нормальному уровню.

 

  1. Дыхательный центр.

Дыхательным центром называют совокупность взаимно связанных нейронов центральной нервной системы, обеспечивающих координированную ритмическую деятельность дыхательных мышц и постоянное приспособление внешнего дыхания к изменяющимся условиям внутри организма и в окружающей среде.

Еще в начале XIX века было показано, что в продолговатом мозге на дне IV желудочка в каудальной его части (в области так называемого писчего пера) расположены структуры, разрушение которых уколом иглы ведет к прекращению дыхания и гибели организма. Этот небольшой участок мозга в нижнем углу ромбовидной ямки, жизненно необходимый для поддержания ритмического дыхания, был назван "дыхательным центром". В дальнейшем было показано, что дыхательный центр расположен в медиальной части ретикулярной формации продолговатого мозга, в области obex, вблизи stria acusticae, и состоит из двух отделов: инспираторного ("центра вдоха") и экспираторного ("центра выдоха").

В ретикулярной формации продолговатого мозга обнаружены так называемые дыхательные нейроны, одни из которых разряжаются серией импульсов в фазу вдоха, другие — в фазу выдоха. В зависимости от того, каким образом активность дыхательных нейронов коррелирует с фазами дыхательного цикла, их называют инспира-торными или экспираторными. В продолговатом мозге не найдено строго обособленных областей, которые содержали бы только ин-спиратерные или только экспираторные дыхательные нейроны. Тем не менее, инспираторные и экспираторные нейроны рассматривают как две функционально различные популяции, внутри которых нейроны связаны между собой сетью аксонов и синапсов. Исследования активности одиночных нейронов ретикулярной формации продолговатого мозга привели к заключению, что область расположения дыхательного центра не может быть очерчена строго и однозначно. Так называемые дыхательные нейроны обнаружены почти на всем протяжении продолговатого мозга. Однако, в каждой половине продолговатого мозга есть участки ретикулярной формации, где дыхательные  нейроны  сгруппированы  с  более  высокой плотностью.

Дорсальная группа дыхательных нейронов продолговатого мозга находится вентролатеральнее ядра одиночного пучка и состоит, главным образом, из инспираторных нейронов. Часть этих кле ток дает нисходящие пути, идущие, в основном, в составе солитар-ного тракта и образующие у человека моносинаптические контакты с мотонейронами диафрагмального нерва в передних рогах 3-6 шейных сегментов спинного мозга. Нейроны диафрагмального ядра спинного мозга разряжаются или непрерывно (с учащением, в фазу вдоха) или залпами, подобно активности дыхательных нейронов продолговатого мозга. Движения диафрагмы, обеспечивающие от 70 до 90% дыхательного объема, связаны именно с нисходящими влияниями дорсальной группы инспираторных нейронов продолговатого мозга.


Вентральная группа дыхательных нейронов расположена в области обоюдного и ретроамбигуального ядер. Нейроны этой группы посылают нисходящие волокна к мотонейронам межреберных и брюшных мышц. Инспираторные мотонейроны спинного мозга концентрируются, главным образом, во 2- 6, а экспираторные - в 8- 10 грудных сегментах. В вентральной группе нейронов продолговатого мозга находятся также эфферентные преганглионарные нейроны блуждающего нерва, обеспечивающие синхронные с фазами дыхания изменения просвета дыхательных путей. Максимум активности нейронов блуждающего нерва, вызывающей повышение тонуса гладких мышц воздухоносных путей, наблюдается в конце выдоха, а минимум  — в конце вдоха.

В продолговатом мозге обнаружены дыхательные нейроны с различным характером ритмической активности. Только у части инспираторных и экспираторных нейронов начало разряда и длительность серии импульсов строго совпадают с периодом соответствующей фазы дыхательного цикла, Однако, при всем разнообразии видов возбуждения разных дыхательных нейронов продолговатого мозга у каждого из них характер ритмической активности остается, как правило, постоянным. На этом основании различают: а) "полные" инспираторные и экспираторные нейроны, ритмическое возбуждение которых по времени точно совпадает с соответствующей фазой дыхания; б) "ранние" инспираторные и экспираторные нейроны, дающие короткую серию импульсов до начала вдоха или выдоха; в) "поздние", проявляющие залповую активность уже после начала инспирации или экспирации: г) "инспираторно- экспираторные", начинающие возбуждаться в фазе вдоха и остающиеся активными в начале выдоха; я) "экспираторно-инспираторные", активность которых начинается во время вдоха и захватывает начало выдоха; е) "непрерывные", работающие без пауз, но с увеличением частоты импульсов во время  вдоха или выдоха  (рис.8.9).

Нейроны каждой разновидности не разбросаны по отдельности и нередко находятся друг от друга на расстояние не более 100 мкм. Полагают, что различные виды дыхательных нейронов образуют своеобразные микрокомплексы, которые служат теми очагами, где формируется автоматизм дыхательного центра. Типичным ритмообразующим комплексом является система из четырех нейронов ("ранних" и "поздних" инспираторных и экспираторных), объединенных возвратными связями и  способных в  совокупности генерировать  залповую  актив

ность. Каждый цикл начинается с активности "раннего" инспираторного нейрона. Затем возбуждение переходит последовательно на "поздний" инспираторный нейрон, "ранний" и "поздний" экспираторные нейро -ны и снова на "ранний" инспираторный. Благодаря наличию возвратных связей, нейрон каждой ритмообра-зующей группы, возбуждаясь, оказывает тормозное воздействие на два предшествующих ему в цикле нейрона. Так называемые "полные" инспираторные и экспираторные нейроны обеспечивают передачу возбуждения по нисходящим путям спинного мозга к мотонейронам, иннервирующим дыхательные  мышцы.

После перерезки у экспериментальных животных ствола мозга ниже варолие-ва моста дыхательные движения сохраняются. Однако,- изолированный от нисходящих влияний дыхательный центр способен обеспечить лишь примитивное дыхание, при котором длительный выдох периодически прерывается короткими вдохами. Для стабильности и координации дыхательного ритма, обуславливающей дыхание с плавным характером перехода от вдоха к выдоху, необходимо, в первую очередь, участие нервных образований варолиева моста.

В передней части варолиева моста обнаружена область, названная пневмо-таксическим центром, раз рушение которой приводит к удлинению фаз вдоха и выдоха, а электрическая стимуляция различных ее зон — к досрочному переключению фаз дыхания. При перерезке ствола мозга на границе между верхней и средней третью варолиева моста и одновременном пересечении обоих блуждающих нервов дыхание останавливается на фазе вдоха, лишь иногда прерываемой экспираторными движениями (так называемый апнейзис). На основании этого был сделан вывод, что дыхательный ритм возникает в результате периодического торможения тонической активности нейронов продолговатого мозга афферентной импульсацией, приходящей по блуждающему нерву и действующей через экспираторные нейроны, а после перерезки блуждающего нерва — вследствие ритмического торможения, поступающего  из пневмотаксического центра варолиева  моста.


В ростральных отделах варолиева моста, в медиальном парабра-хиальном ядре, в участках мозговой ткани вентральнее его, а также в структурах, относящихся к управлению дополнительными дыхательными мышцами, т.е. в том месте, которое идентифицируют как пневмотаксический центр, найдено наибольшее количество дыхательных нейронов моста. В отличие от нейронов продолговатого мозга, стабильно сохраняющих характер залповой активности, в варолиевом мосту один и тот же дыхательный нейрон может изменить характер своей деятельности. Дыхательные нейроны варолиева моста организованы в группы, состоящие из 10-12 нейронов разного вида. Среди них много так называемых переходных (фазово-охватывающих) нейронов, проявляющих с максимумом частоты при смене фаз дыхательного цикла. Этим нейронам приписывают функцию связывания различных фаз дыхательного цикла, подготовки условий для прекращения фазы вдоха и перехода к выдоху. Пневмотаксический центр варолиева моста связан с дыхательным центром продолговатого мозга восходящими и нисходящими проводящими путями. К медиальному парабронхиальному ядру и ядру Келликера-Фузе из продолговатого мозга поступают аксоны нейронов одиночного пучка и ретроамбигуального ядра. Эти аксоны являются основным входом в пневмотаксического центра. Отличительной чертой активности дыхательных нейронов варолиева моста является то, что при нарушении связи с продолговатым мозгом они теряют залповый характер импульсации и модуляцию частоты импульсов в ритме дыхания.

Считается, что пневмотаксический центр получает импульсы от инспираторной части дыхательного центра продолговатого мозга и посылает импульсы обратно к дыхательному центру в продолговатый мозг, где они возбуждают экспираторные и тормозят инспираторные нейроны. Дыхательные нейроны варолиева моста первыми получают сведения о необходимости приспособления дыхания к изменяющимся условиям и соответствующим образом меняют активность нейронов дыхательного центра, а переходные нейроны обеспечивают плавную смену вдоха на выдох. Таким образом, благодаря совместной работе с пневмотаксическим комплексом, дыхательный центр продолговатого  мозга может осуществлять ритмическую смену фаз ды-


хательного цикла с оптимальным соотношением длительности вдоха, выдоха и дыхательной паузы. Однако, для нормальной жизнедеятельности и поддержания адекватного потребностям организма дыхания необходимо участие не только варолиева моста, но и вышележащих отделов головного мозга.

 

53. Пищеварение  в желудке.

К функциям желудка относятся:

  1. депонирование пищи;

  1. секреторная — отделение желудочного сока, обеспечивающего химическую обработку пищи;

  1. двигательная — перемешивание пищи с пищеварительными соками и ее передвижение порциями в двенадцатиперстную кишку;

  1. всасывания в кровь незначительных количеств веществ, поступивших с пищей. Вещества, растворенные в спирту, всасываются в значительно больших количествах;

  1. экскреторная — выделение вместе с желудочным соком в полость желудка метаболитов (мочевина, мочевая кислота, креатин, креатинин), концентрация которых здесь превышает пороговые величины, и веществ, поступивших в организм извне (соли тяжелых металлов, йод, фармакологические препараты);

  1. инкреторная — образование гормонов, принимающих участие в регуляции деятельности желудочных и других пищеварительных желез (гастрин, гистамин, соматостатин, мотилин

  1. защитная — бактерицидное и бактериостатическое действие желудочного сока и возврат недоброкачественной пищи, предупреждающий  ее попадание  в кишечник.

 

Секреторная деятельность осуществляется желудочными железами, продуцирующими желудочный сок и представленными тремя видами клеток:

 

  1. главными (главные гландулоциты), принимающие участие в выработке ферментов; париетальными (париетальные гландулоциты), участвующие в выработке хлористоводородной кислоты (НС1)

  1. добавочными (мукоциты), выделяющими мукоидный секрет (слизь).

Клеточный состав желез изменяется в зависимости от принадлежности их к тому или иному отделу желудка, соответственно изменяется состав и свойства секрета,  который они выделяют.

Состав и свойства желудочного сока. В состоянии покоя "натощак" из желудка человека можно извлечь около 50 мл желудочного содержимого нейтральной или слабокислой реакции (рН=б,0). Это смесь слюны, желудочного сока (так называемая "базальная" секреция), а иногда — забрасываемое в желудок содержимое двенадцатиперстной кишки.

Общее количество желудочного сока, отделяющегося у человека при  обычном  пищевом режиме,  составляет   1,5-2,5  л в  сутки.   Это бесцветная, прозрачная жидкость. В соке могут быть хлопья слизи. Желудочный сок имеет кислую реакцию (рН=0,8-1,5) вследствие высокого содержания в нем соляной к-ты.

Содержание воды в соке 99,0-99,5% и 1,0-0,5% — плотных веществ. Плотный остаток представлен органическими и неорганическими веществами (хлоридами, сульфатами, фосфатами, бикарбонатами натрия, калия, кальция, магния). Основной неорганический компонент желудочного сока — соляная к-та — может быть в свободном и связанном с протеинами состоянии. Органическая часть плотного остатка — это ферменты, желудочная слизь,мочевина,мочевая кислота,  молочная  кислота

 

Механизм секреции соляной к-ты. НС1 вырабатывается париетальными клетками, расположенными в перешейке, шейке и верхнем отделе тела железы. Эти клетки характеризуются исключительным богатством митохондрий вдоль внутриклеточных канальцев. 

увеличение секреторной активности париетальных клеток обусловливается увеличением площади секреторной мембраны. Это сопровождается повышением суммарного заряда ионного переноса, и увеличением числа контактов мембран с митохондриями — поставщиками энергии и ионов водорода для синтеза  НС1.

 

Кислопродуцирующие клетки желудка активно используют собственный гликоген для  секреции. Секреция НС1 характеризуется как ярко выраженный цАМФ-зависимый процесс, активация которого протекает на фоне усиления гликогенолитической и гликолитической активности, что сопровождается продукцией пирувата. Окислительное декарбоксилирование пирувата до ацетил-КоА-СО2 осуществляется пируватдегидрогеназным комплексом и сопровождается накоплением в цитоплазме НАДН2. Последний используется для генерирования Н+ в процессе секреции НС1. Расщепление триглицеридов в слизистой желудка под влиянием триглицеридлипазы и последующая утилизация жирных кислот создает в 3-4 раза больший приток восстановительных эквивалентов в митохондриальную цепь переноса электронов. Обе цепи реакции, как аэробный гликолиз, так и окисление жирных кислот, запускаются посредством цАМФ-зависимого фосфорилирования соответствующих ферментов, обеспечивающих генерирование ацетил- КОа в цикле Кребса и восстановительных эквивалентов для электронпере-носящей цепи митохондрий. Са2+ выступает здесь как абсолютно необходимый  элемент секреторной системы  НС1.

Информация о работе Шпаргалка по "Биологии"