Автор работы: Пользователь скрыл имя, 23 Июня 2013 в 21:55, курсовая работа
Пневматические шины являются одним из основных элементов ходовой части автомобиля.
В процессе эксплуатации шины обеспечивают смягчение возникающих при движении автомобиля толчков, ударов, вибрации, передачу тяговых и тормозных сил, сцепление колес автомобиля с дорогой, устойчивость, управляемость и безопасность движения, динамичность и плавность хода, проходимость в различных условиях дорог, а также влияют на расход топлива автомобилем и шумообразование.
Конструкция пневматических шин.
Морозостойкие шины предназначены
для применения в районах с
температурой ниже минус 45 °С. Работа автомобилей
в этих районах на обычных неморозостойких
шинах не разрешается действующими
Правилами эксплуатации шин. Морозостойкие
шины изготавливают из резин, сохраняющих
достаточную прочность и
Шины для тропического климата отличаются тем, что они изготовлены из теплостойкой резины, хорошо сохраняющей прочность и эластичность при высоких скоростях и высоких температурах окружающего воздуха, характерных для стран с тропическим климатом. Эти шины имеют каркас из капронового либо высокопрочного или сверхпрочного вискозного корда.
Шины с металлическими шипами служат для повышения устойчивости и управляемости легковых и грузовых автомобилей и автобусов на скользких обледенелых дорогах и на льду. Диагональные и радиальные шины могут оснащаться шипами в протекторе. Применение этих шин снижает тормозной путь автомобиля в 2…3 раза, улучшает разгон в 1,5 раза и резко повышает устойчивость автомобиля против заносов.
Низко- и сверхнизкопрофильные шины выпускаются для легковых, грузовых автомобилей и автобусов. Они имеют пониженную высоту профиля (для низкопрофильных Н/В = 0,7-0,88; для сверхнизкопрофильных Н / В < 0,7, где Я - высота профиля; В - ширина профиля), что повышает устойчивость и управляемость автомобиля, обладают большей грузоподъемностью и проходимостью.
Взаимодействие шин с дорогой
При движении автомобиля шина работает в очень сложных и тяжелых условиях. В процессе качения на шину действуют различные по значению и направлению силы. К внутреннему давлению воздуха и действию массы автомобиля на шину в неподвижном состоянии при качении колеса добавляются динамические силы, а также силы, связанные с перераспределением массы автомобиля между колесами. Силы изменяют свое значение, а в ряде случаев и направление в зависимости от скорости движения и состояния дорожного покрытия, температуры окружающего воздуха, уклонов, характера поворотов дороги и т.п.
Рис. - Силы, действующие на неподвижное (а) и подвижное (б) колесо.
Под действием сил при качении колеса шина в различных зонах непрерывно деформируется, т.е. отдельные ее части изгибаются, сжимаются, растягиваются. При продолжительном движении шина нагревается, в результате чего повышается внутреннее давление воздуха в шине и снижается прочность ее деталей, особенно резиновых.
Действующие на колесо автомобиля силы и моменты вызывают со стороны дороги реактивные силы, которые в общем случае расположены в трех взаимно перпендикулярных направлениях и приложены к колесу в месте его контакта с основанием дороги. Эти реактивные силы получили название вертикальной, тангенциальной и боковой. Неподвижное колесо подвержено действию одной вертикальной силы G от веса автомобиля, приложенной к оси колеса и равной ей по значению реактивной силе Z со стороны дороги. Вертикальная сила G, приложенная к оси колеса, и ее реакция Z со стороны дороги расположены в одной вертикальной плоскости, проходящей через ось колеса.
В случае ведомого колеса (рис. 7) толкающая сила Р от автомобиля через подшипник передается на ось колеса и вызывает со стороны дороги тангенциальную реакцию X,которая приложена к поверхности колеса в зоне его контакта с дорогой и имеет противоположное толкающей силе Р направление,
Качение ведомого колеса по опорной поверхности приводит к нарушению симметрии в области контакта колеса и дороги относительно вертикали, проходящей через центр колеса, и вызывает смещение реакции Z относительно этой вертикали вперед по ходу движения колеса на определенную величину я, называемую коэффициентом трения и измеряемую в единицах длины. Вертикальная реакция Z, как и при неподвижном колесе, численно равна нагрузке.
Рис. . Силы, действующие на ведущее (а) и тормозящее (б) колесо
Работа ведущего колеса отличается от работы ведомого колеса тем, что к ведущему колесу прикладывается не толкающая сила, а крутящий момент Мк (рис. 8, а). Этот момент должен уравновесить суммарное сопротивление Рсопр всех противодействующих движению сил (ветра, уклона дороги, трения, инерционных). В результате в контакте колеса с дорогой возникает реакция Rx = P сопр, направленная в сторону движения.
Кроме функции ведомого и
ведущего, колесо может выполнять
тормозящую функцию. Работу тормозящего
колеса можно сравнить с работой
ведущего. Разница состоит в том,
что тормозной момент, а значит,
и тангенциальная реакция дороги
имеют противоположное
Кроме перечисленных сил,
колесо часто подвергается действию
боковых сил и моментов, являющихся
следствием действия на шасси автомобиля
опрокидывающих поперечных сил, например
центробежной силы на повороте или
составляющей массы, обусловленной
наклоном дороги. На выпуклом или вогнутом
профиле дороги, а также при
движении по дороге, имеющей неровности,
колеса также могут испытывать действие
боковых сил (рис. 9), которые при
условии их равенства на левых
и правых колесах по величине и
противоположности по направлению
будут гаситься на оси, не передаваясь
на сам автомобиль. Действие на колесо
боковой силы ограничено сцеплением
колеса с дорогой. При движении автомобиля
по выпуклому или вогнутому
Таким образом, весь комплекс внешних нагрузок, действующих на колесо со стороны дороги, может быть представлен тремя взаимно перпендикулярными силами:
Рис. 9 - Действие сил на колеса во время движения по неровному основанию
вертикальной реакцией Z,
значение которой обусловливается
суммарной массой перевозимого груза
и автомобиля. Эта нагрузка всегда
действует на колесо независимо от
того, движется оно или нет, работает
в качестве ведомого, ведущего или
тормозящего. Значение же этой нагрузки
при движении может изменяться в
зависимости от ускорения (замедления),
продольного и поперечного
тангенциальной реакцией,
расположенной в плоскости
боковой реакцией У, которая расположена в плоскости, перпендикулярной плоскости колеса. Подобно тангенциальной эта реакция также ограничена силой сцепления колеса с дорогой, и, следовательно, ее максимальное значение не может быть больше вертикальной силы, за исключением случаев движения по неровной дороге, глубокой колее. В этих условиях боковая реакция может значительно превосходить силу сцепления колеса с дорогой.
Особого интереса заслуживают
качение наклоненного колеса и боковой
увод шины. При движении автомобиля
на повороте профиль эластичной шины
деформируется в боковом
Способность шины «к боковой деформации оказывает большое влияние на эксплуатационные свойства автомобиля, особенно на его устойчивость и управляемость. Поэтому параметры, определяющие увод колеса, являются важной характеристикой шины.
Увод колеса оценивается утлом d, который принято называть углом бокового увода.
Рис. 10 - Деформация шин при повороте автомобиля и соответствующее искажение пятна контакта шины с дорогой из-за увода колеса (вид А)
Приложенные к колесу силы
вызывают боковую деформацию шины в
результате изгиба протектора в боковом
направлении. При качении колеса
с уводом шина имеет сложную деформацию,
которая несимметрична
Для каждой шины имеются
определенная максимальная боковая
сила и соответствующий ей определенный
максимальный угол увода, при котором
еще отсутствует большое
Одним из часто встречающихся случаев качения колеса является случай движения его с наклоном к дороге. Действительно, на автомобиле колеса могут иметь наклон к дороге из-за применения независимой подвески, наклона дороги и других факторов.
Наклон колеса к дороге оказывает существенное влияние на работу шины и траекторию движения. При качении наклонного колеса в плоскости вращения со стороны дороги на него действуют также боковая сила и крутящий момент. Последний стремится повернуть колесо в сторону его наклона. Наклон колеса к дороге приводит к появлению боковой деформации шины, в результате которой центр контакта колеса с дорогой смещается в сторону наклона колеса. У наклонного колеса протектор шины изнашивается быстро и неравномерно, особенно в плечевой зоне со стороны наклона колеса. Таким образом, наклон колеса к дороге значительно уменьшает срок службы шины.
Наклон колеса к дороге изменяет угол увода. При движении автомобиля на повороте, когда при поперечном наклоне кузова колесо наклоняется в сторону боковой силы, увод колеса увеличивается. Такое явление наблюдается у передних управляемых колес легковых автомобилей, имеющих независимую подвеску. Уменьшение склонности шин к боковому уводу и уменьшение наклона колеса к дороге положительно сказывается на продлении срока службы шин.
Особенности эксплуатации автомобильных шин
автомобиль шина колесо покрышка
Потери энергии на качение шин
Пневматическая шина благодаря наличию в ней сжатого воздуха и упругих свойств резины способна поглощать огромное количество энергии. Если шину, накачанную до определенного давления, нагрузить внешней силой, например вертикальной, а затем разгрузить, то можно заметить, что при разгружении не вся энергия возвратится, так как часть ее, расходуемая на механическое трение в материалах шины и трение в контакте, составляет необратимые потери.
При качении колеса происходит потеря энергии на ее деформацию. Так как энергия, возвращающаяся при разгрузке шины, меньше энергии, затраченной на ее деформирование, то для поддержания равномерного качения колеса необходимо постоянно пополнять потери энергии извне, что и осуществляется приложением к оси колеса либо толкающей силы, либо крутящего момента.
Кроме сопротивлений, возникающих
в результате потерь, связанных с
деформацией шины, движущееся колесо
испытывает сопротивление, обусловленное
трением в подшипниках, а также
сопротивление воздуха. Эти сопротивления,
хотя и незначительны, однако тоже принадлежат
к категории необратимых
Потери на качение оценивают
также силой сопротивления
Рис. 11 - Зависимость силы сопротивления качению Рк шины 6,45- J3R модели М-130А с металлокордным брекером от скорости v.
Сопротивление качению в сильной степени зависит от скорости качения. В реальных условиях эксплуатации сопротивление качению может возрастать более чем в 2 раза. На рис. 11 показаны результаты испытания, когда шина имела нормальную нагрузку 375 кгс и соответствующее ей давление воздуха 1,9 кг/ см2. Испытания проводились на барабанном стенде при установившемся тепловом состоянии шины. На рис. 11 видны три явно выраженные зоны нарастания силы сопротивления качению. При очень малых скоростях движения (в начале зоны I) потери мощности на качение минимальны. Эти потери обусловлены сжатием резины в зоне контакта шины с дорогой.
В зоне II с увеличением скорости происходит нарастание потерь, и все больше начинают сказываться силы инерции движения колеса. Начиная с определенного значения скорости, деформация элементов шины значительно возрастает, что характеризует процессы качения в зоне III.
Увеличение давления воздуха в шине приводит к снижению потерь на качение шины по твердому покрытию во всем диапазоне изменения скорости, уменьшению радиальной деформации» и повышению ее жесткости, что уменьшает тепловые потери. Надо помнить, что в процессе качения по мере нагрева шины давление воздуха в ней повышается, а сопротивление качению уменьшается. Разогрев холодной шины до установившейся рабочей температуры приводит к снижению коэффициента сопротивления качению примерно на 20 %. Зависимость сопротивления качению от давления воздуха является важной характеристикой шины.
Информация о работе Восстановление автошин холодным способом