Лекции по "Технологии"

Автор работы: Пользователь скрыл имя, 13 Августа 2013 в 10:36, курс лекций

Описание работы

В данной работе изложен материал лекций по "Теоретическому и экспериментальному исследованию гидравлического удара в трубопроводах".

Содержание работы

Лекция №1. Введение
Гидравлика как предмет
Методы исследования
Жидкость как объект изучения гидравлики
Основные свойства жидкости
Лекция №2. Гидростатика
1.Силы, действующие в жидкости
1.1 Массовые силы
1.2 Поверхностные силы
1.2.1 Силы поверхностного натяжения
1.3 Силы давления
1.3.1Свойства гидростатического давления
2. Основное уравнение гидростатики
3. Приборы для измерения давления

Файлы: 18 файлов

Лекции.doc

— 48.50 Кб (Просмотреть файл, Скачать файл)

Лекция №1 введение.doc

— 244.00 Кб (Просмотреть файл, Скачать файл)

Лекция №10 истечение жидкости из отверстий и насадков.doc

— 110.00 Кб (Просмотреть файл, Скачать файл)

Лекция №11 гидравлический удар.doc

— 270.00 Кб (Просмотреть файл, Скачать файл)

Лекция №12Гидравлические машины и насосы.doc

— 149.00 Кб (Просмотреть файл, Скачать файл)

Лекция №13 ОСНОВНОЕ УРАВНЕНИЕ ЦЕНТРОБЕЖНЫХ НАСОСОВ.doc

— 246.50 Кб (Скачать файл)

Создаваемый насосом полный напор Н определяется разностью напоров, создаваемых потоком жидкости в двух сечениях, соответствующих началу нагнетательного трубопровода (H2) и концу всасывающего трубопровода H1, т. е. Н = H2—H1. В этих сечениях обычно устанавливают манометры и вакуумметры.

Определим значения напора потока в сечении 1—1, где установлен вакуумметр, и в сечении 2—2, где расположен манометр. Принимая за плоскость сравнения О—О уровень свободной поверхности жидкости в резервуаре А, получим выражения для определения значений удельной энергии:

       

где zвак и zман — вертикальные расстояния от центров вакуумметра и манометра до оси насоса; Р1 и Р2 — абсолютное давление в местах установки приборов; V1 и V2 — скорости во всасывающей и нагнетательной трубах.

Следовательно, полный напор  насоса

        где       

 

Вакуумметр показывает значение разрежения (вакуума) Hвак  во всасывающей трубе, поэтому

 или  

Манометр показывает избыточное давление в нагнетательном трубопроводе, поэтому

 или 

Подставляя эти значения получим

В случае равенства диаметров всасывающего и нагнетательного трубопроводов (V1 = V2) и при расположении вакуумметра и е манометра на одном уровне

(Dh = 0) полный напор насоса

При подборе насоса для  данной установки потребный напор  насоса рассчитывают по формуле

где hвc, hн — соответственно геометрическая высота всасывания и нагнетания;

hs вс, hs н— соответственно потери напора во всасывающем и нагнетательном трубопроводах,

или иначе                 

где - полная высота подъема жидкости; сумма гидравлических потерь напора во всасывающем и напорном трубопроводах.

 

Мощность и  коэффициент полезного действия насоса. Полезную, или теоретическую, мощность насоса N (кВт) определяют как произведение весовой подачи на напор:

где pg— удельный вес жидкости, Н/м3; Q— объемная подача насоса, м/с; H— напор, развиваемый насосом, м.

Полезная (или теоретическая) мощность насоса Nп всегда меньше затрачиваемой мощности или мощности, подводимой к валу насоса N, так как в насосе неизбежно возникновение потерь энергии:

Общие потери (гидравлические, объемные и механические), возникающие  при передаче энергии перекачиваемой жидкости, учитывает полный коэффициент полезного действия.

Гидравлическими потерями называют потери энергии на преодоление гидравлических сопротивлений при движении жидкости от входа в насос до выхода из него. Эти потери энергии учитываются гидравлическим КПД

где Н— требуемый напор насоса; h — потери напора внутри насоса.

В современных насосах  КПД = 0,8...0,95.

Объемными потерями называют потери энергии, возникающие в результате утечки жидкости из нагнетательной части  насоса во всасывающую. Например, через рабочее колесо выходит жидкость в количестве Qк, основная часть которой по ступает в напорный патрубок насоса, а другая часть возвращается на всасывание через зазоры в уплотнении между корпусом насоса и колесом. При этом теряется часть энергии. Эти потери оценивают объемным КПД насоса:

где Q — подача насоса; Qк — расход жидкости, проходящей через колесо насоса, в современных насосах 0,9...0,98.

Потери энергии, возникающие  вследствие трения в подшипниках, сальниках, а также вследствие трения наружной поверхности рабочего колеса о жидкость, называют механическими потерями. Эти потери учитываются механическим КПД:

где N— мощность, подводимая к валу насоса; Nтр — потери мощности на преодоление сопротивления трения.

Механический КПД может  составлять 0,95...0,98. Полный КПД насоса представляет собой произведение всех трех коэффициентов полезного действия:

и характеризует совершенство конструкции насоса и степень его изношенности.

Максимальный КПД крупных  современных насосов достигает 0,9 и более, а КПД малых насосов может составлять 0,6...0,7.

На КПД насоса влияет коэффициент быстроходности. Общий  характер этого влияния показывают кривые, приведенные на рис. из которых следует, что максимальные КПД соответствуют диапазону ns = 140...220 об/мин, причем существенное влияние оказывает подача Q, т. е. размер насоса. С ростом подачи Q увеличивается и КПД насоса.

 

Влияние быстроходности на характеристики (а)

При непосредственном соединении вала насоса с валом электродвигателя мощность Nдв (кВт) электродвигателя

где К— коэффициент запаса, учитывающий случайные перегрузки двигателя; при мощности двигателя до 2 кВт рекомендуется принимать коэффициент К равным 1,5; от 2 до 5 кВт— 1,5...1,25; от 5 до 50 кВт- 1,25.. 1,15; от 50 до 100 кВт-1,15...1,05; более 100 кВт- 1,05.

Если вал насоса соединен с валом двигателя редуктором или ременной передачей, то мощность двигателя Nдв = KN/h пр , где h пр — КПД привода или редуктора.

Зависимость напора от количества и формы лопаток. Нетрудно заметить, что развиваемый центробежным насосом напор зависит от формы лопаток и создаваемого ими соотношения скоростей. Различают три типа лопаток: отогнутые назад (по ходу вращения рабочего колеса); отогнутые вперед; с радиальным выходом.

Лопатки первого типа обеспечивают наименьшие гидравлические потери и больший КПД. Причем изменение подачи практически не влияет на потребляемую мощность, что благоприятно воздействует на условия работы двигателя, который даже при изменении подачи насоса работает в постоянном режиме.

При использовании лопаток, отогнутых вперед, с радиальным выходом  наблюдаются значительные гидравлические потери и снижение КПД насоса. Это происходит в результате резкого увеличения сечений канала между лопатками. В данном случае незначительное изменение подачи приводит к резкому изменению мощности и, следовательно, требуется двигатель повышенной мощности.

Характеристика  насоса. Характеристикой центробежного насоса, или внешними и рабочими характеристиками, называют графическую зависимость основных показателей насоса, таких как напор, мощность и КПД, от подачи, а кавитационной характеристикой — график зависимости напора, подачи и КПД от избыточного напора на всасывании Н.

Все параметры насоса взаимосвязаны, и изменение одного из них неизбежно влечет за собой  изменение других. Если при постоянной частоте вращения ротора увеличить  подачу насоса, то создаваемый им напор уменьшится. При изменении условий работы КПД насоса также меняется: при некоторых определенных значениях расхода и напора КПД насоса будет максимальным, а при всех других режимах его работы насос работает с худшим КПД. Отметим, что на КПД сильно влияет коэффициент быстроходности .

Характеристики центробежных насосов  наглядно показывают эффективность  их работы на различных режимах и  позволяют точно подобрать наиболее экономичный насос для заданных условий работы.

Рабочая характеристика насоса вследствие гидравлических потерь и непостоянства гидравлического КПД отличается от теоретической.

Потери напора в рабочем колесе складываются из потерь на Трение в  каналах колеса, потерь на удар при  отклонениях скорости на входе в колесо от касательного направления в лопатке и др.

Как видно из рис.   б, все зависимости строят на одном графике в соответствующих масштабах, причем подачу Q насоса откладывают по оси абсцисс, а напор Н, вакуумметрическую высоту, мощность и КПД — по оси ординат.

Чтобы определить по рабочей характеристике необходимые параметры насоса, поступают следующим образом. По заданной подаче насоса Qo находят на кривой Q —Н точку С, от которой проводят горизонтальную линию до пересечения со шкалой Н, где находят напор, соответствующий заданному расходу. Для определения мощности и КПД насоса проводят горизонтальные прямые из точек А и В и на шкалах N и h и таким образом находят соответствующие значения No и ho.

Рабочие характеристики насосов имеют несколько отличительных точек и областей. Начальная точка характеристики соответствует нулевой подаче насоса Q=0, что наблюдается при работе насоса с закрытой задвижкой на напорном трубопроводе. Как видно из рис.  а, центробежный насос в этом случае развивает некоторый напор и потребляет мощность, которая расходуется на механические потери и нагрев воды в насосе.

 

 Рабочая характеристика центробежного насоса (б)

Режим работы насоса, соответствующий  максимальному КПД, называют оптимальным. Главная цель подбора насосов — обеспечение их эксплуатации при оптимальном режиме, учитывая, что кривая КПД имеет в зоне оптимальной точки пологий характер, однако на практике пользуются рабочей частью характеристики насоса (зона, соответствующая примерно 0,9hмакс, в пределах которой допускаются подбор и эксплуатация насосов).

Кавитационные характеристики необходимы для оценки кавитационных свойств насосов и правильного выбора высоты всасывания. Для построения кавитационной характеристики насоса его подвергают кавитационным испытаниям на специальных стендах.

В определенных границах изменения  избыточного напора на всасывании Hвс.изб значения Q, Н и hостаются неизменными. При некоторых значениях Нвс.изб появляются шумы и треск при работе насоса, характеризующие наступление местной кавитации. При дальнейшем понижении Нвс.изб значения Q, Н и h начинают постепенно уменьшаться, кавитационный шум усиливается и в конечном счете происходит срыв работы насоса. Точно установить момент начала воздействия кавитации на Q, Н и h не представляется возможным, поэтому условно принимают за минимальную избыточную высоту всасывания Нвс.изб min, то ее значение, при котором подача насоса падает на 1 % своего первоначального значения.

Очень часто на рабочие характеристики насосов наносят еще кривую Нвак — Q, которая дает значения допустимой вакуумметрической высоты всасывания в зависимости от подачи насоса.


Лекция №14 Теория подобия в гидравлике.doc

— 105.00 Кб (Просмотреть файл, Скачать файл)

Лекция №15.doc

— 236.50 Кб (Просмотреть файл, Скачать файл)

Лекция №16 Объемные гидроприводы.doc

— 184.00 Кб (Просмотреть файл, Скачать файл)

Лекция №2 гидростатика.doc

— 595.50 Кб (Просмотреть файл, Скачать файл)

Лекция №3 дифф уравнение равновесия покоящейся жидкоти.doc

— 220.00 Кб (Просмотреть файл, Скачать файл)

Лекция №4 давление жидкости на окружающие стенки.doc

— 295.00 Кб (Просмотреть файл, Скачать файл)

лекция №5 гидродинамика.doc

— 158.50 Кб (Просмотреть файл, Скачать файл)

лекция №6 уравнение бернули.doc

— 229.00 Кб (Просмотреть файл, Скачать файл)

Лекция №7 режимы течения жидкостей.doc

— 177.50 Кб (Просмотреть файл, Скачать файл)

Лекция №8 Гидравлические сопротивления в потоках.doc

— 276.50 Кб (Просмотреть файл, Скачать файл)

Лекция №9 гидравлический расчет трубопроводов.doc

— 291.50 Кб (Просмотреть файл, Скачать файл)

Информация о работе Лекции по "Технологии"