Автор работы: Пользователь скрыл имя, 13 Августа 2013 в 10:36, курс лекций
В данной работе изложен материал лекций по "Теоретическому и экспериментальному исследованию гидравлического удара в трубопроводах".
Лекция №1. Введение
Гидравлика как предмет
Методы исследования
Жидкость как объект изучения гидравлики
Основные свойства жидкости
Лекция №2. Гидростатика
1.Силы, действующие в жидкости
1.1 Массовые силы
1.2 Поверхностные силы
1.2.1 Силы поверхностного натяжения
1.3 Силы давления
1.3.1Свойства гидростатического давления
2. Основное уравнение гидростатики
3. Приборы для измерения давления
Подобную систему уравнений можно записать для любого числа ветвей разветвлённого трубопровода. Решая её, можно определить, какой расход и какое давление должен обеспечивать источник гидравлической энергии, чтобы на выходе трубопроводов получалось заданное давление при заданном расходе.
Трубопроводы с равномерно распределенным путевым расходом.
Это такие трубопроводы, в которых вдоль всего пути расход
Расход в сечении А (рис. )
Схема к расчету трубопровода с путевым расходом
где QТ — транзитный расход; Qn — путевой расход.
Отношение путевого расхода Qn к длине трубопровода l называют удельным расходом q.
С течением времени расход постепенно уменьшается и становится равным QT в сечении В, а в произвольном сечении С расположенном на расстоянии х от начального сечения А расход жидкости
Потери напора по длине в трубопроводе для квадратичной области турбулентного режима
Если на участке АВ будет отобран весь расход, т. е. отсутствует транзитный расход (QT = 0), то потери напора по длине в данном частном случае примут вид формулы, которая носит название формулы Дюпуи:
В случае расчета трубопроводов с путевым расходом с достаточной степенью точности Qп2 /3 можно заменить членом Qп2 /4. Тогда
Расчетный расход на участке АВ
Анализ этой формулы показывает, что путевой расход Qп эквивалентен транзитному расходу и зависит от степени равномерности отбора жидкости по длине трубопровода.
Расчет кольцевой сети. Кольцевая сеть состоит из замкнутых колец и магистралей, присоединенных к водонапорной башне или резервуару. Рассмотрим простейший случай расчета кольцевой водопроводной сети, состоящей из магистрального трубопровода А—В и одного кольца В—1—2—3—-4—В (рис. ). Расход, забираемый в точках 1, 2, 3, 4, обозначим соответственно через Q1, Q2, Q3, Q4
На основании топографических данных, длины участков трубопровода, диаметра труб задаемся направлением движения воды по кольцу и нулевой (раз
дельной) точкой сети. Нулевая точка выбирается таким образом, чтобы потери напора в ветвях слева и справа от этой точки были одинаковыми. Далее, так же как и при расчете тупиковой сети, определяем диаметр труб и подсчитываем потери напора на каждом участке по левой и правой сторонам кольца.
Если нулевая точка О выбрана правильно, то сумма потерь напора по левой стороне кольца должна равняться сумме потерь напора по правой стороне кольца, т. е.
где h0-2 и т.д. - потери напора по длине на соответствующем участке
Если это условие не выполняется, то расчет следует продолжать до тех пор, пока не будет получено равенство потерь напора в двух рассматриваемых разомкнутых сетях.
В большинстве гидравлических систем технологического оборудования в качестве источника энергии используются насосы различного принципа действия. Важнейшей задачей, которая возникает при проектировании каждой гидросистемы, является согласование работы насосной станции и системы трубопроводов, гидроаппаратов и гидромашин, входящих в её состав. Это многообразные и сложные задачи, которые подробно рассматриваются в курсах, связанных с изучением гидропривода. Здесь мы познакомимся лишь с общим принципом таких расчётов.
Для этого рассмотрим наиболее простой случай трубопровода, по которому насос перекачивает жидкость из гидробака в ёмкость или полость с заданными величинами давления и расхода. К таким ёмкостям можно отнести, например, гидроцилиндр. Нивелирными высотами, как и в предыдущих случаях, пренебрежём из-за их малости.
Запишем сначала уравнение Бернулли для сечений 2 и 3
где - суммарные потери давления в напорном трубопроводе (характеристика напорного трубопровода).
Теперь запишем уравнение Бернулли для сечений 0 и 1
где - атмосферное давление,
- суммарные потери давления во всасывающем трубопроводе (характеристика всасывающего трубопровода).
Из второго уравнения
В процессе своей работы насос передаёт жидкости дополнительную энергию Hнасоса, в результате чего общий напор жидкости в сечении 2 становится равным:
т.е. можно записать:
Выделим из полученного равенства величину Hнасоса:
Перегруппируем члены в этом выражении:
Если принять, что:
Последнее выражение представляет собой рабочую характеристику насоса.
Построив характеристику трубопровода и характеристику насоса можно найти так называемую рабочую точку, как точку пересечения характеристик насоса и трубопровода. Это означает, что при соответствующих этой точке давлении и расходе, будет обеспечиваться работа насоса с требуемыми характеристиками. Чтобы получить другую рабочую точку нужно или изменить рабочую характеристику насоса или характеристику трубопровода. Это можно сделать различными способами, например, изменив сопротивление трубопровода или режим работы насоса.