Автор работы: Пользователь скрыл имя, 28 Марта 2013 в 17:09, дипломная работа
Целью выпускной квалификационной работы является изучение теоретических и прикладных аспектов анализа кредитоспособности заемщика, принятых в банковской практике.
Объектом исследования выпускной квалификационной работы выступает филиал ВоРУ ОАО «МИнБ».
Предметом исследования выпускной квалификационной работы является непосредственно процесс анализа кредитоспособности заемщиков в банковской практике.
Рассмотрим классификацию моделей оценки кредитоспособности заемщиков коммерческих банков, предложенную И.В. Вишняковым (рис. 1.1.2.) [6, С.25].
Рис. 1.1.2. Классификация моделей оценки кредитоспособности заемщиков
Классификационные модели дают возможность группировать заемщиков: прогнозные модели дифференцируют их в зависимости от вероятности банкротства; рейтинговые - в зависимости от категории, устанавливаемой с помощью группы рассчитываемых финансовых коэффициентов и присваиваемых им уровней значимости.
Рейтинговая оценка (общая сумма баллов) рассчитывается путем умножения значения показателя на его вес (коэффициент значимости) в интегральном показателе. В мировой практике при оценке кредитоспособности на основе системы финансовых коэффициентов применяются в основном следующие пять групп коэффициентов: ликвидности, оборачиваемости, финансового рычага, прибыльности, обслуживания долга.
Э. Рид предложил следующую
Коллектив ученых (Дж. Шим, Дж. Сигел, Б. Нидлз, Г. Андерсон, Д. Колдвел) [12] предложил использовать группы показателей, характеризующих ликвидность, прибыльность, долгосрочную платежеспособность и показатели, основанные на рыночных критериях. В отличие от методики Э. Рида, этот подход позволяет прогнозировать долгосрочную платежеспособность с учетом степени защищенности кредиторов от неуплаты процентов (коэффициента покрытия процента). Коэффициенты, основанные на рыночных критериях, включают отношение цены акции к доходам, размер дивидендов и рыночный риск. С их помощью определяются отношение текущего биржевого курса акций к доходам в расчете на одну акцию, текущая прибыль их владельцев, изменчивость курса акций фирмы относительно курсов акций других фирм. Однако расчет некоторых коэффициентов сложен и требует применения специальных статистических методов. На практике каждый коммерческий банк выбирает для себя определенные коэффициенты и решает вопросы, связанные с методикой их расчета. Этот подход позволяет охарактеризовать финансовое состояние заемщика на основе синтезированного показателя-рейтинга, рассчитываемого в баллах, присваиваемых каждому значению коэффициента. В соответствии с баллами устанавливается класс организации: первоклассная, второклассная, третьеклассная или неплатежеспособная. Класс организации принимается банком во внимание при разработке шкалы процентных ставок, определении условий кредитования, установлении режима кредитования (форма кредита, размер и вид кредитной линии и т.д.), оценке качества кредитного портфеля, анализе финансовой устойчивости банка [15, с.67].
Модификацией рейтинговой
- необходимость тщательного отбора финансовых показателей (требуется использовать показатели, описывающие разные стороны работы заемщика, с тем, чтобы более полно охарактеризовать его положение);
- важность обоснования
- необходимость обоснования коэффициентов значимости для каждой группы показателей в соответствии с отраслью деятельности конкретного заемщика;
- определение величины
- при рейтинговой оценке
- финансовые коэффициенты
- рассчитываемые коэффициенты
показывают лишь отдельные
- в системе рассчитываемых
Прогнозные модели, получаемые с помощью статистических методов, используются для оценки качества потенциальных заемщиков. При множественном дискриминантном анализе (МДА) используется дискриминантная функция (Z), учитывающая некоторые параметры (коэффициенты регрессии) и факторы, характеризующие финансовое состояние заемщика (в том числе финансовые коэффициенты). Коэффициенты регрессии рассчитываются в результате статической обработки данных по выборке фирм, которые либо обанкротились, либо выжили в течение определенного времени. Если Z-оценка фирмы находится ближе к показателю средней фирмы-банкрота, то при условии продолжающегося ухудшения ее положения она обанкротится. Если менеджеры фирмы и банк предпримут усилия для устранения финансовых трудностей, то банкротство, возможно, не пройдет. Таким образом, Z-оценка является сигналом для предупреждения банкротства фирмы. Применение данной модели требует обширной репрезентативной выборки фирм по разным отраслям и масштабам деятельности. Сложность заключается в том, что не всегда можно найти достаточное число обанкротившихся фирм внутри отрасли для расчета коэффициента регрессии.
Наиболее известными моделями МДА являются модели Альтмана и Чессера, включающие следующие показатели: отношение собственных оборотных средств к сумме активов; отношение реинвестируемой прибыли к сумме активов; отношение рыночной стоимости акций к заемному капиталу; отношение объема продаж (выручки от реализации) к сумме активов; отношение брутто-прибыли (прибыли до вычета процентов и налогов) к сумме активов.
Организацию относят к определенному классу надежности на основе значений Z-индекса модели Альтмана. Пятифакторная модель Альтмана построена на основе анализа состояния 66 фирм и позволяет дать достаточно точный прогноз банкротства на два-три года вперед. В более поздних работах ученый изучил такие факторы, как капитализируемые обязательства по аренде, применил сглаживание данных для устранения случайных колебаний. Новая модель с высокой степенью точности предсказывает банкротство на два года вперед и с меньшей вероятностью (примерно 70%) - на пять лет вперед. Построение в российских условиях подобных моделей достаточно сложно из-за отсутствия статистических данных о банкротстве организаций, постоянного изменения нормативной базы в области банкротства и признания банкротства организации на основе данных, не поддающихся учету [15, с.82].
Модель Чессера позволяет
Отечественные дискриминантные модели
прогнозирования банкротства
В уравнении Сайфулина, Кадыкова используются следующие коэффициенты: коэффициент обеспеченности собственными средствами (нормативное значение X1 ≥ 0,1); коэффициент текущей ликвидности (X2≥2); интенсивность оборота авансируемого капитала, характеризующая объем реализованной продукции, приходящейся на 1 руб. средств, вложенных в деятельность организации (Х3≥2,5); рентабельность продаж, рассчитываемая как отношение прибыли от продаж к выручке (для каждой отрасли индивидуальная); рентабельность собственного капитала (Х5≥0,2). При полном соответствии значений финансовых коэффициентов минимальным нормативным уровням Z = 1 финансовое состояние заемщика с рейтинговым числом менее 1 характеризуется как неудовлетворительное.
Помимо МДА-моделей
При классификации кредитов возможно использование модели CART (Classification and regression trees), что переводится как «классификационные и регрессионные деревья». Это непараметрическая модель, основные достоинства которой заключаются в возможности широкого применения, доступности для понимания и легкости вычислений, хотя при построении применяются сложные статистические методы. В «классификационном дереве» фирмы-заемщики расположены на определенной «ветви» в зависимости от значений выбранных финансовых коэффициентов; далее идет «разветвление» каждой из них в зависимости от следующих коэффициентов. Точность классификации при использовании данной модели - около 90%. Пример «классификационного дерева» представлен на рис. 1.1.3., где Кi - финансовый коэффициент; Рi - нормативное значение показателя; В - предполагаемый банкрот; S - предположительно устойчивое состояние [12].
Рис. 1.1.3. «Классификационное дерево» модели CART
В дополнение к выделенным И.В. Вишняковым моделям необходимо добавить методику, широко используемую в отечественной практике, - методику на основе анализа денежных потоков. Эта методика и отличие от подхода, основанного на финансовых коэффициентах, позволяет использовать не данные об остатках по статьям активов и пассивов, а коэффициенты, определяемые по данным об оборотах ликвидных активов, запасах и краткосрочных долговых обязательствах, посредством расчета чистого сальдо различных поступлений и расходов денежных средств за определенный период. Разница между притоком и оттоком средств показывает величину общего чистого денежного потока. Кратковременное превышение оттока над притоком говорит о дефиците денежных средств (более низком рейтинге клиента). Систематическое превышение оттока над притоком средств характеризует клиента как некредитоспособного. Сложившаяся средняя величина общего денежного потока может устанавливаться в качестве предела выдачи новых кредитов, так как показывает размер средств, с помощью которых клиент имеет возможность погашать долговые обязательства. На основе соотношения величины общего денежного потока и размера долговых обязательств клиента определяется его класс кредитоспособности. Анализ денежного потока позволяет сделать вывод о слабых сторонах управления предприятия. При решении вопроса о выдаче кредита на длительный срок анализ денежного потока проводится не только на основе данных за истекший период, но и на основе прогнозных данных на планируемый период [35, с.112].
Модели оценки кредитоспособности, основанные на методах комплексного анализа. В случае использования математических моделей не учитывается влияние «качественных» факторов при предоставлении банками кредитов. Эти модели лишь отчасти позволяют кредитным экспертам банка сделать вывод о возможности предоставления кредита. Недостатками классификационных моделей являются их «замкнутость» на количественных факторах, произвольность выбора системы количественных показателей, высокая чувствительность к недостоверности исходных данных, громоздкость при использовании статистических межотраслевых и отраслевых данных. В рамках комплексных моделей анализа возможно сочетание количественных и качественных характеристик заемщика. К примеру, в практике банков США применяется правило «шести Си», в основе которого лежит использование шести базовых принципов кредитования, обозначенных словами, начинающимися с «С»: Character, Capacity, Cash, Collateral, Conditions, Control [20, с.137].
Информация о работе Оценка кредитоспособности заемщика, принятых в банковской практике