Автор работы: Пользователь скрыл имя, 14 Мая 2013 в 11:56, курс лекций
Тема 1. Таможенная статистика как научная дисциплина.
План:
Предмет и содержание таможенной статистики.
Сущность таможенной статистики как составной части статистических наук.
Объект таможенной статистики.
Разделы таможенной статистики.
Задачи таможенной статистики.
Правовая и нормативная база таможенной статистики
Тема 9.Статистическое изучение динамики ВЭД на основе данных таможенной статистики.
План:
Одной из важнейших задач статистики является изучение изменений анализируемых показателей во времени, то есть их динамика. Эта задача решается при помощи анализа рядов динамики (временных рядов).
Ряд динамики – это числовые значения определенного статистического показателя в последовательные моменты или периоды времени (т.е. расположенные в хронологическом порядке).
Числовые значения того
или иного статистического пока
Ряды динамики, как правило, представляют в виде таблицы (см. табл. 25) или графически (см. рис. 17), причем по оси абсцисс строится шкала времени t, а по оси ординат – шкала уровней ряда y.
Таблица 25. Внешнеторговый оборот (ВО) России за период 2000-2007 гг.
Год |
2000 |
2001 |
2002 |
2003 |
2004 |
2005 |
2006 |
2007 |
Млрд. долл. США |
149,9 |
155,6 |
168,3 |
212,0 |
280,6 |
368,9 |
468,4 |
552,2 |
Рис. 17. Внешнеторговый оборот (ВО) России за период 2000-2007 гг.
Данные табл. 25 и рис. 17 наглядно иллюстрируют ежегодный рост внешнеторгового оборота (ВО) в России за период 2000-2007 гг.
2. Показатели изменения уровней ряда динамики
Анализ рядов динамики начинается с определения того, как именно изменяются уровни ряда (увеличиваются, уменьшаются или остаются неизменными) в абсолютном и относительном выражении. Чтобы проследить за направлением и размером изменений уровней во времени, для рядов динамики рассчитывают показатели изменения уровней ряда динамики:
Все эти показатели могут определяться базисным способом, когда уровень данного периода сравнивается с первым (базисным) периодом, либо цепным способом – когда сравниваются два уровня соседних периодов.
Абсолютное изменение (абсолютный прирост) уровней рассчитывается как разность между двумя уровнями ряда по формуле (69) – для базисного способа сравнения или по формуле (70) – для цепного. Оно показывает, на сколько (в единицах показателей ряда) уровень одного (i-го) периода больше или меньше уровня какого-либо предшествующего периода, и, следовательно, может иметь знак «+» (при увеличении уровней) или «–» (при уменьшении уровней).
; (69) . (70)
В табл. 26 в столбце 3 рассчитаны базисные абсолютные изменения по формуле (69), а в столбце 4 – цепные абсолютные изменения по формуле (70).
Таблица 26. Анализ динамики ВО России
Год |
y |
||||||
2000 |
149,9 |
||||||
2001 |
155,6 |
5,7 |
5,7 |
1,038 |
1,038 |
3,8 |
3,8 |
2002 |
168,3 |
18,4 |
12,7 |
1,123 |
1,082 |
12,3 |
8,2 |
2003 |
212 |
62,1 |
43,7 |
1,414 |
1,260 |
41,4 |
26,0 |
2004 |
280,6 |
130,7 |
68,6 |
1,872 |
1,324 |
87,2 |
32,4 |
2005 |
368,9 |
219 |
88,3 |
2,461 |
1,315 |
146,1 |
31,5 |
2006 |
468,4 |
318,5 |
99,5 |
3,125 |
1,270 |
212,5 |
27,0 |
2007 |
552,2 |
402,3 |
83,8 |
3,684 |
1,179 |
268,4 |
17,9 |
Итого |
2355,9 |
402,3 |
3,684 |
Между базисными и
цепными абсолютными
В нашем примере про ВО подтверждается правильность расчета абсолютных изменений по формуле (71): = 402,3 рассчитана в итоговой строке 4-го столбца, а = 402,3 – в предпоследней строке 3-го столбца табл. 26.
Относительное изменение (темп роста или индекс динамики) уровней рассчитывается как отношение (деление) двух уровней ряда по формуле (72) – для базисного способа сравнения или по формуле (73) – для цепного.
; (72) . (73)
Относительное изменение показывает во сколько раз уровень данного периода больше уровня какого-либо предшествующего периода (при >1) или какую его часть составляет (при <1). Относительное изменение может выражаться в виде коэффициентов, то есть простого кратного отношения (если база сравнения принимается за единицу), и в процентах (если база сравнения принимается за 100 единиц) путем домножения относительного изменения на 100%.
В табл. 26 в столбце 5 рассчитаны базисные относительные изменения по формуле (72), а в столбце 6 – цепные относительные изменения по формуле (73).
Между базисными и цепными относительными изменениями существует взаимосвязь: произведение цепных относительных изменений равно последнему базисному изменению, то есть
В нашем примере про
ВО подтверждается правильность расчета
относительных изменений по формуле (74):
= 1,038*1,082*1,260*1,324*1,315*
Темп изменения (темп прироста) уровней – относительный показатель, показывающий, на сколько процентов данный уровень больше (или меньше) другого, принимаемого за базу сравнения. Он рассчитывается путем вычитания из относительного изменения 100%, то есть по формуле (75):
или как процентное отношение абсолютного изменения к тому уровню, по сравнению с которым рассчитано абсолютное изменение (базисный уровень), то есть по формуле (76):
В табл. 26 в столбце 7 рассчитаны базисные темпы изменения ВО по формуле (75), а в столбце 8 – цепные темпы изменения по формуле (76). Все расчеты в табл. 26 свидетельствуют о ежегодном росте ВО России за период 2000-2007 гг.
3. Средние показатели ряда динамики
Каждый ряд динамики можно рассматривать как некую совокупность n меняющихся во времени показателей, которые можно обобщить в виде средних величин. Такие обобщенные (средние) показатели особенно необходимы при сравнении динамики изменений того или иного показателя ВЭД в разные периоды, в разных странах и т.д.
Обобщенной характеристикой ряда динамики служит прежде всего средний уровень ряда . Для разных видов рядов динамики он рассчитывается неодинаково. Ряды динамики бывают равномерные (с равными интервалами времени между уровнями), для которых средний уровень определяется по простой формуле средней величины, и неравномерные (с неравными интервалами), для которых используются формулы средних взвешенных (по интервалам времени) величин. В интервальном ряду динамики (в котором время задано в виде промежутков времени, к которым относятся уровни) определяется по формуле средней арифметической, а в моментном ряду (в котором время задано в виде конкретных моментов времени или дат, к которым относятся уровни) – по формуле средней хронологической. В табл. 27 приводятся виды рядов динамики и соответствующие формулы для расчета их среднего уровня .
Таблица 27. Виды средних величин, применяемых при расчете среднего уровня
Вид ряда динамики |
Название средней величины |
Формула средней величины |
Номер формулы |
Равномерный интервальный |
Арифметическая простая |
(77) | |
Равномерный моментный |
Хронологическая простая |
(78) | |
Неравномерный интервальный |
Арифметическая взвешенная |
(79) | |
Неравномерный моментный |
Хронологическая взвешенная |
(80) |
В нашем примере про ВО России за период 2000-2007 гг. имеем равномерный интервальный ряд динамики, поэтому его средний уровень определяем по формуле (77): = 2355,9/8 = 294,488, то есть ВО России в период 2000-2007 гг. составлял ежегодно в среднем 294,488 млрд. долл. США.
Кроме среднего уровня ряда рассчитываются и другие средние показатели:
Каждый из этих показателей может рассчитываться базисным и цепным способом.
Базисное среднее абсолютное изменение – это частное от деления последнего базисного абсолютного изменения на количество изменений уровней (81); цепное среднее абсолютное изменение уровней ряда – это частное от деления суммы всех цепных абсолютных изменений на количество изменений (82):
Б = (81) Ц = (82)
По знаку средних абсолютных изменений также судят о характере изменения явления в среднем: рост, спад или стабильность. Очевидно, что числители формулы (81) и (82) равны между собой по формуле (71), значит, среднее абсолютное изменение не зависит от способа расчета (базисный или цепной), так как результат получится одинаковый. В нашей задаче по формуле (81) или (82):
= 402,3/7 = 57,471, то есть ежегодно в среднем ВО растет на 57,471 млрд. долл.
Наряду со средним абсолютным изменением рассчитывается и среднее относительное. Базисное среднее относительное изменение определяется по формуле (83), а цепное среднее относительное изменение – по формуле (84):
Б= = (83) Ц= (84)
Естественно, базисное и
цепное среднее относительное
Вычитанием 100% из среднего относительного изменения образуется соответствующий средний темп изменения, по знаку которого также можно судить о характере изменения изучаемого явления, отраженного данным рядом динамики. В нашем примере про ВО: = 1,205 – 1 = 0,205, то есть ежегодно в среднем в период 2000-2007 гг. ВО России растет на 20,5%.
4. Тренд ряда динамики
Одна из основных задач изучения рядов динамики – выявить основную тенденцию (закономерность) в изменении уровней ряда, именуемую трендом. Закономерность в изменении уровней ряда в одних случаях проявляется наглядно, в других – может маскироваться колебаниями случайного или неслучайного характера. Поэтому, чтобы сделать правильные выводы о закономерностях развития того или иного показателя, надо суметь отделить тренд от колебаний, вызванных случайными кратковременными причинами. На основании выделенного тренда можно экстраполировать (прогнозировать) развитие явления в будущем. С этой целью (устранить колебания, вызванные случайными причинами) ряды динамики подвергают обработке.
Существует несколько
методов обработки рядов
Информация о работе Лекции по "Общей и таможенной статистике"