Формирование представлений про множество детей дошкольного возраста

Автор работы: Пользователь скрыл имя, 25 Мая 2015 в 00:15, курсовая работа

Описание работы

Метою курсової роботи є формування у дітей дошкільного віку уявлень про множину за допомогою ігор.

Завдання курсової роботи полягає у:
- вивченні теоретичних основ навчання дітей математиці за допомогою ігор.
- аналізі досліджень педагогів та психологів гри та її формування.
- розгляді занять з математики.
- ознайомленні з методичними рекомендаціями батьків та вихователів.

Файлы: 1 файл

19-04 КП Педагогика Формирование представлений про множество детей дошкольного возраста - 89-.doc

— 430.00 Кб (Скачать файл)

Концепція формування елементарних математичних уявлень у дітей, розроблена Г.М. Леушиною, служить джерелом для багатьох сучасних досліджень, а дидактична система пройшла випробування часом, показала свою ефективність в умовах громадського дошкільного виховання, успішно функціонує вже декілька, десятків років.

У 60–70-ті роки в Україні та інших республіках тодішнього Союзу було проведено ряд досліджень з різних проблем методики формування елементарних математичних уявлень (М.М. Макляк, О.К. Грибанова, В.К. Котирло, К.В. Назаренко, З.Є. Лебедєва), що значно доповнили методику навчання дошкільників елементарної математики. Під час досліджень виявлено, що основою математичного розвитку дітей є порівняння різних конкретних (перервних і неперервних) величин. Поняття «перервна величина» відповідає потужності множини, елементи якої легко полічити. У дослідженнях Г.М. Леушиної в основному увага приділялась формуванню поняття про число на підставі перервних (дискретних) величин – множин предметів, іграшок, картинок, звуків тощо.

Однак ознайомлення дітей з числом тільки на основі порівняння конкретних множин дає неповне уявлення про число. Дослідження П.Я. Гальперіна та Л.С. Георгієва показали, що число дітьми має сприйматися насамперед як результат вимірювання, як відношення вимірюваної величини до обраної міри. Внаслідок такого навчання діти раніше, ніж при традиційній системі, ознайомлюються з числом, яке дістають не тільки при перелічуванні, а й при вимірюванні; з числом не тільки як характеристикою кількості окремих предметів, що становлять перелічувану групу, а й як показником відношення. З самого початку навчання до свідомості дітей доводиться той факт, що. число залежить від обраної міри, що міра – складова частина вимірюваної величини, але зовсім не тотожна поняттю одиниці як окремості. Сучасні дослідження дали змогу включити до програми виховання у дитячому садку навчання дітей вимірювання.

Дослідження П.М. Ерднієва було спрямоване на вивчення складної методики навчання обчислювальної діяльності в дитячому садку і школі. У прийнятій дитячим садком і школою методиці розв'язування арифметичних задач спочатку пропонувались задачі на додавання, а потім – віднімання. П.М. Ерднієв запропонував новий метод – одночасного вивчення цих дій, тобто на одному занятті дітей ознайомлювали із задачами на додавання й віднімання. Крім того, дослідження показали, що з найперших кроків дітей доцільно ознайомлювати з необхідністю інколи робити об'єднання або перестановку доданків, підкреслюючи при цьому, що від зміни місць доданків результат (сума) не змінюється. Така підготовча робота до вивчення переставного та сполучного законів додавання у дитячому садку дає змогу формувати в дітей усвідомлене ставлення до арифметичних дій, озброювати їх узагальненими способами виконання різних видів математичної діяльності. У 60–70-ті роки були проведені дослідження з багатьох інших проблем математичного розвитку дошкільників. Це дало змогу визначити обсяг і зміст навчання математики в дитячому садку. До програми з математики було введено ознайомлення дітей з розмірами та формою предметів, просторовими і часовими відношеннями, способами вимірювання неперервних величин (лінійне та об'ємне вимірювання), відношення частинного і цілого тощо.

Психолого-педагогічні дослідження М.М. Подд’якова, В.В. Давидова, Л.В. Занкова, Л.А. Венгера свідчать про значно більші, ніж вважалося досі, розумові можливості дітей у процесі навчання, в тому числі в процесі навчання математики. Так, дослідження, проведені Л.А. Венгером та Т.В. Тарунтаєвою, були спрямовані на з'ясування рівня математичних знань, здобутих в результаті навчання на заняттях і поза ними. Дослідження показали, що у дітей у віці два – три роки починають формуватися перші уявлення про кількість, вони вже вміють виділити одиниці з множини, порівнювати предмети за кількістю навіть без будь-якого цілеспрямованого навчання. До чотирьох-п'яти років вони спонтанно оволодіють деякими лічильними операціями не лише наочно. Проте, дітям молодшого віку завдання, що потребували застосування міри, без спеціального навчання виявились недоступними. Діти навіть старшого дошкільного віку стихійно вимірюванням не оволодівали. Процес оволодіння мірою як засобом зіставлення величин можна і слід організувати у дошкільному віці і він ефективний для загального розвитку.

У сучасних дослідженнях психологів і педагогів (І.С. Костюка, М.М. Поддьякова, О.Я. Савченко, М.В. Богдановича, Л.П. Кочіної, Н.І. Непомнящої) дедалі більше підкреслюється необхідність навчання дітей узагальнених прийомів і способів діяльності. Таким чином, протягом останніх років методика, поповнилась теоретичними дослідженнями і різними конкретними рекомендаціями, що значно підвищило ефект навчання.

Однією з актуальних проблем методики формування елементарних математичних уявлень є наступність у роботі дитячого садка і школи, а у зв'язку з цим – дальша розробка найефективніших методів та методичних прийомів навчання. Вивчення математики у початковій школі передбачає досить широку і глибоку орієнтацію дітей у кількісних і просторових відношеннях навколишньої дійсності. Сучасне ж навчання математики у дитячому садку не завжди повною мірою розв'язує це завдання. Нерідко математичні знання діти засвоюють формально, без належного розуміння їх. Однією з причин такого рівня знань є недостатня розробленість окремих методичних питань. Так, сучасне навчання математики у дитячому садку багато в чому спирається на вербальні (словесні) методи, що дають змогу формувати у дітей конкретні знання, уміння й навички, і недостатньо орієнтується на методи, які сприяють розвитку пізнавальних інтересів і здібностей, логічності викладу. Досі в методиці навчання математики в дитячому сад ку немає чітких показників математичного розвитку дошкільного віку. Часто рівень математичного розвитку дитини визначають, виходячи, передусім, з обсягу, суми окремих знань, тоді як розвиток забезпечується системою та якістю цих знань. У зв'язку з цим дуже гостро стоїть проблема розробки принципів відбору та систематизації математичних знань на підставі індивідуалізації та диференціації навчання. Розв'язання цих проблем дасть змогу досягти вищого рівня математичного розвитку.

Поряд з цим здійснюється дальша наукова розробка проблеми навчання дітей дошкільного віку узагальнених способів пізнавальної діяльності, широкого використання матеріалізованих форм наочності (схеми, моделі, графіки). Застосування схем, моделей, графіків у. педагогічному процесі дитячого садка сприятиме розвитку в дітей пізнавальної активності, здатності творчо використовувати раніше здобуті знання.

Досвід роботи у дошкільних закладах показує, що більше уваги слід приділяти розвитку мови в процесі формування елементарних математичних уявлень. У зв'язку з цим треба вивчити особливості оволодіння дошкільниками математичною термінологією, елементарною математичною логікою. Значні труднощі спостерігаються в організації процесу навчання, зокрема навчання математики у малокомплектному дитячому садку. Позитивне розв'язання цих проблем поліпшить математичну підготовку дітей до школи. Сукупність необхідних умов розвитку вміння порівнювати включає: диференційоване навчання з урахуванням індивідуальних особливостей дітей; поетапне навчання порівнянню; систематичне використання порівнювання об’єктів на заняттях і в дидактичній грі.

Отже, аналіз психолого-педагогічних досліджень засвідчує значущість проблеми формування математичної обізнаності в дошкільному дитинстві. У зв’язку з цим виникла нагальна потреба перебудови змісту навчання математики в дитячому садку, що знайшло відгук у працях класиків та сучасників вітчизняної і зарубіжної педагогічної, психологічної науки.

 

1.2 Методика математичного виховання дітей дошкільного віку

 

Формування початкових математичних понять у дітей всіх вікових груп дитячого садка здійснюється на загальних методичних положеннях. Ці положення повною мірою сприяють засвоєнню кількісних оцінок, формуванню числових понять, розвитку знань про форму і всіх інших знань, передбачених дошкільною програмою з математики. Нижче будуть розглянуті окремі методики засвоєння таких знань. Проте всі ці методики виходять із загальних методичних настанов.

Різні математичні поняття тісно пов'язані між собою. Це є відбиттям об'єктивних зв'язків навколишньої дійсності.

Простежується зв'язок і між поняттями, що формуються у дітей в дошкільному періоді навчання, а саме, між поняттями оцінки величин, числовими величинами, поділу цілого на частини, умовної міри та іншими. Так, формування поняття кількісних оцінок величин безпосередньо пов'язане з розвитком умінь дітей бачити, умовно виділяти величину предметів (великий, малий), величину їх параметрів (довгий, вузький), а також умінь визначити відношення між предметами (більший – менший – рівні) та між їх параметрами (вищий – нижчий – рівні за висотою). Такі знання допомагають утворенню числових абстракцій. Адже, засвоюючи числові поняття, дитина має кількісні відношення елементів сукупності абстрагувати від усіх інших відношень і властивостей елементів цієї сукупності, тобто від їх кольору, форми, просторового розміщення, величини та ін. Це потребує уміння помітити ці властивості, мислено відділити їх від кількісної сторони цієї сукупності предметів. У процесі формування оцінок величин саме й розвивається одне з таких необхідних умінь – визначати величину предметів та їх параметрів, диференціювати їх від інших відношень і ознак цих предметів. Таким чином, формування оцінок величин пов'язане з розвитком числових узагальнень і сприяє швидкому утворенню їх. Крім того, сформованість оцінок величин позитивно впливає і на формування знань про форму предметів, тому що і тут знання дітей про величину об'єктів полегшують і прискорюють процес виділення форми цих об'єктів. Таким же способом пов'язані й інші засвоювані дошкільниками математичні знання. Формування початкових математичних понять у взаємозв'язку дає можливість поступово і цілеспрямовано конкретизувати і уточнювати кожне з визначених понять. Так, вимірювання сприяє формуванню повноцінних у математичному розумінні понять про числа. Число виступає виразником відношень вимірюваної величини до обраної одиниці вимірювання. Поняття про поділ цілого на частини дає можливість формувати більш чіткі поняття про множину (рівність, нерівність об'єктів), про числа (склад чисел), про час тощо. В свою чергу, поняття про лічбу, число позитивно впливає на формування понять про геометричні фігури, про оцінки величин, множину, сприяє більш правильному орієнтуванні в часі. «Між поняттями відбувається взаємодія, вони постійно відчувають залежність одно від одного».

У процесі такого навчання діти набувають чуттєвого досвіду в розрізненні властивостей об'єктів і різних їх математичних відношень, послідовно узагальнюють засвоювані математичні знання. Відбувається пізнання кількісних відношень, абстрагування їх, диференціювання якісних властивостей об'єктів та їх просторових відношень.

Диференційованість властивостей і відношень об'єктів є матеріальною основою виділення, абстрагування кількісних відношень від самих об'єктів та їхніх численних якостях і водночас є умовою формування уявлень і понять як про кількісні відношення, так і про особливості об'єктів – їхню величину, колір, форму їх тощо.

У процесі формування початкових математичних понять у взаємозв'язку дошкільники навчаються бачити предмети в різноманітності і багатстві їхніх властивостей, різні особливості і відношення речей. Це тим більше потрібно, що в математичних поняттях виступають взаємозв’язано кількість і якість. Розглянемо, наприклад, одне з основних понять – міру. У ньому поєднуються абстрактно виражені якість і кількість.

Формування початкових математичних понять у взаємозв'язку є ефективним і щодо позитивного впливу на розумовий розвиток дітей дошкільного віку. На це звертав увагу ще К.Д. Ушинський. Він доводив, що треба вчити дітей бачити предмети у різних взаємовідношеннях.

Отже, різні початкові математичні поняття–оцінки величин, числові величини, поділ цілого на частини, про міру, про форму – формуються у дітей в дитячому садку не ізольовано, окремо одне від одного, а, навпаки, у взаємозв'язку.

У процесі формування початкових математичних понять чільне місце посідає оволодіння дітьми відповідними насамперед практичними, а також і розумовими діями. Математичні поняття починають формуватись у дитини завдяки діям із предметами, завдяки усвідомленню значення цих дій. «Рівець знань, їх багатство, усвідомленість і рухливість визначаються тією системою дій, яка здійснюється дитиною».

Передумовою оволодіння початковими математичними поняттями у дитини є формування розумових дій і операцій, які поступово складаються на основі зовнішніх практичних дій. Цей процес здійснюється неминуче в онтогенетичному розвитку дитини. Пізнання дитиною кількісних відношень здійснюється за допомогою цілого ряду її практичних і розумових дій. Без допомоги дорослих дитина самостійно оволодіти ними не може. Дії починають формуватися як зовнішні, матеріалізовані: з предметами та зображеннями їх (наприклад, визначаючи кількість предметів, дитина практично ними оперує). Конкретні, практичні дії з предметами є необхідний і дуже важливий момент у пізнанні кількісних відношень. При цьому дія має бути адекватною знанням, що засвоюються. При цьому вихователь враховує необхідність включати в програму конкретний зміст відповідних дій і сам хід оволодіння ними. Практичні дії, відіграючи важливу роль у формуванні початкових математичних понять, не залишаються незмінними. Далі вони «здійснюються» тільки у плані голосного мовлення, без спирання на предмети чи зображення їх. Нарешті, дії виконуються мислено, тобто стають внутрішніми, розумовими діями, що характеризуються згорнутою структурою. Перехід від одного рівня дії до другого здійснюється поступово, після засвоєння попереднього рівня. Характер дії змінюється на різних рівнях розвитку дітей: з розвитком мовлення, з розвитком словесно-понятійного мислення. Таким чином, відповідно до підвищення рівня дій удосконалюються знання дітей. Можна простежити, як змінюються дії при формуванні понять про оцінку величин, знань проформу тощо. Як приклад розглянемо зміну лічильних дій. Спочатку, коли діти тільки вчаться лічити, вони перекладають предмети з одного місця на друге, зберігаючи між ними певну відстань, голосно лічать їх. Поступово ця відстань скорочується, і вони вже не перекладають, а пересувають предмети, ставлячи їх поряд. Після засвоєння цієї практичної розгорнутої лічильної дії рівень її підвищується – діти лише доторкаються до предметів лічби, лічать голосно. Спочатку вони з силою ставлять пальчик на кожен предмет, дуже повільно і голосно лічать їх. Поступово сила натискання пальцем на предмети зменшується, і діти лічать предмети, ледве торкаючись до них.

Наступний етап – діти вказують на предмети лічби і голосно їх лічать. Спочатку дитина майже доторкається до предметів лічби, потім відстань між предметами і рукою збільшується. Поступово рука майже зовсім перестає рухатися, і дитина починає голосно лічити предмети без її допомоги. На цьому етапі помітна така особливість: діти значно зменшують темп лічби і збільшують силу голосу, немовби намагаються компенсувати рухи. Іноді зупинять погляд на кожному предметі на 2–3 секунди. Потім темп лічби збільшується, але зменшується сила голосу, він доходить до шепоту. Потім діти лічать зовсім тихо, майже нечутно, але губи ще ворушаться.

Потім дія переходить у розумовий план: діти лічать мовчки, без допомоги рук. Воші вже навчились лічити предмети, їхні зображення мовчки, в плані внутрішнього мовлення, де сама лічильна дія підлягає перетворенню і набуває рис, які специфічно характеризують внутрішні розумові дії з властивою їм згорнутою структурою.

Таким чином, якщо проходити поступово через всі ступені лічильних дій, то діти оволодівають лічбою на рівні розумових дій. Аналізуючи ступені лічильних дій, треба підкреслити, що це умовний поділ, що вже практичні дії обов'язково містять у собі психічні, розумові процеси. Слід говорити про тісний взаємозв'язок практичних і розумових дій, переплетіння їх.

Кожна розумова дія здійснюється за допомогою операцій порівняння, аналізу, синтезу, абстрагування, узагальнення, конкретизації. Ці операції взаємозв'язані, вони існують як система операцій. Для кожної з них є зворотна операція: поділивши мислено об'єкт на частини, ми знову об'єднуємо їх в єдине ціле.

У зв'язку з тим що об'єктом пізнання в математиці, як відомо, є приховані кількісні зв'язки й відношення речей, явищ дійсності, провідна роль у засвоєнні математичних знань належить розумовим діям. Саме завдяки їм діти усвідомлюють кількісні відношення. Проте, як зазначалось вище, самостійно виробити розумові дії дитина не може, тому їх спочатку активно формують у неї дорослі. З рівня зовнішніх, матеріальних, ці дії поступово переводяться на вищий рівень і виконуються в умі як внутрішні. Одночасно удосконалюється певне знання, поглиблюється й уточнюється. Тому методикою навчання передбачається цілеспрямована планомірна пізнавальна діяльність дітей під керівництвом вихователя, під час якої в певній послідовності формуються дії дітей. Вихователь «переводить» дитину з нижчого рівня дій на вищий. З цією метою утворюється ситуація, в якій за допомогою засвоєних дій не можна визначити потрібне. Тому «знаходять» нові дії, що дають змогу успішно розв'язати поставлену задачу. Усвідомлення дитиною життєвої необхідності зміни дій сприяє розвитку пізнавального ставлення до своїх дій, свідомому засвоєнню знань.

Информация о работе Формирование представлений про множество детей дошкольного возраста